A novel media properties-based material removal rate model for magnetic field-assisted finishing

材料科学 磁场 复合材料 领域(数学) 机械工程 工程类 数学 物理 量子力学 纯数学
作者
Chun Wai Kum,Takashi Satō,Jiang Guo,Kui Liu,David Butler
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:141: 189-197 被引量:34
标识
DOI:10.1016/j.ijmecsci.2018.04.006
摘要

Magnetic field assisted finishing (MFAF) is a category of non-conventional finishing processes that use magnetic field to manipulate finishing media typically consisting of magnetic particles and non-magnetic abrasives suspended in a carrier fluid.In order to better control the process, an improved understanding of the actual removal process is needed.This paper will introduce a new material removal rate model for magnetic fieldassisted finishing (MFAF) that will aim do so.The model considers the complexity of finishing media used in MFAF processes, where two different types of particles are presented and interact with each other.The proposed material removal rate expression is based on contact mechanics and is a function of the number of active magnetic particles, number of active abrasives, force per magnetic particle, and force per abrasive.Expressions for particle numbers have been developed by considering an ideal facecentred cubic configuration for the magnetic particle network, while expressions for forces have been developed based on a proposed framework for the particle interactions.The model has been verified experimentally for a double-magnet MFAF process by varying the abrasive size and abrasive concentration.When the abrasive size was increased from 0.6 μm to 15 μm, the material removal rate decreased which is consistent with the theoretical trend given by the model.Then, when abrasive concentration, given by the abrasives-to-carbonyl-iron volumetric ratio, was increased from 0 to 0.768, the material removal rate initially increased and then reached a maximum when the volume ratio is 0.259 before decreasing with further increase of the volume ratio.This is also in agreement with the theoretical trend given by the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
闻歌发布了新的文献求助10
1秒前
大力水手完成签到,获得积分10
1秒前
yinshan完成签到 ,获得积分10
2秒前
hello完成签到,获得积分10
2秒前
冷傲半邪完成签到,获得积分10
3秒前
3秒前
3秒前
脑洞疼应助八森木采纳,获得10
4秒前
Gardener完成签到 ,获得积分10
4秒前
汪哈七发布了新的文献求助10
5秒前
xiaochuan完成签到,获得积分10
6秒前
共享精神应助闻歌采纳,获得10
6秒前
ZhaoY完成签到,获得积分10
6秒前
kiterunner完成签到,获得积分10
6秒前
6秒前
鸿鹄在天涯完成签到 ,获得积分10
8秒前
生命科学的第一推动力完成签到 ,获得积分10
8秒前
柠栀完成签到 ,获得积分10
12秒前
13秒前
Estrella应助cchow采纳,获得10
14秒前
漂亮的素关注了科研通微信公众号
14秒前
忍冬完成签到,获得积分10
15秒前
深情安青应助立食劳栖采纳,获得10
16秒前
Bgeelyu完成签到,获得积分10
17秒前
老北京发布了新的文献求助10
19秒前
001026Z发布了新的文献求助10
19秒前
Dr.Lee完成签到,获得积分10
20秒前
20秒前
小棉背心完成签到 ,获得积分10
21秒前
核桃nut完成签到,获得积分10
22秒前
神勇的半莲完成签到,获得积分10
22秒前
丘比特应助chens627采纳,获得30
22秒前
CodeCraft应助jc库卡哭采纳,获得10
25秒前
26秒前
ZS发布了新的文献求助10
27秒前
立食劳栖完成签到,获得积分10
28秒前
情怀应助pp采纳,获得10
28秒前
29秒前
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139867
求助须知:如何正确求助?哪些是违规求助? 2790746
关于积分的说明 7796497
捐赠科研通 2447159
什么是DOI,文献DOI怎么找? 1301623
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601185