A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion

高光谱成像 多光谱图像 计算机科学 凸优化 传感器融合 算法 最优化问题 单纯形 图像融合 矩阵分解 数学优化 正规化(语言学) 模式识别(心理学) 反问题 数学 人工智能 正多边形 图像(数学) 数学分析 特征向量 物理 几何学 量子力学
作者
Chia-Hsiang Lin,Fanyuan Ma,Chong-Yung Chi,Chih-Hsiang Hsieh
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (3): 1652-1667 被引量:78
标识
DOI:10.1109/tgrs.2017.2766080
摘要

Fusing a low-spatial-resolution hyperspectral data with a high-spatial-resolution (HSR) multispectral data has been recognized as an economical approach for obtaining HSR hyperspectral data, which is important to accurate identification and classification of the underlying materials. A natural and promising fusion criterion, called coupled nonnegative matrix factorization (CNMF), has been reported that can yield high-quality fused data. However, the CNMF criterion amounts to an ill-posed inverse problem, and hence, advisable regularization can be considered for further upgrading its fusion performance. Besides the commonly used sparsity-promoting regularization, we also incorporate the well-known sum-of-squared-distances regularizer, which serves as a convex surrogate of the volume of the simplex of materials’ spectral signature vectors (i.e., endmembers), into the CNMF criterion, thereby leading to a convex formulation of the fusion problem. Then, thanks to the biconvexity of the problem nature, we decouple it into two convex subproblems, which are then, respectively, solved by two carefully designed alternating direction method of multipliers (ADMM) algorithms. Closed-form expressions for all the ADMM iterates are derived via convex optimization theories (e.g., Karush–Kuhn–Tucker conditions), and furthermore, some matrix structures are employed to obtain alternative expressions with much lower computational complexities, thus suitable for practical applications. Some experimental results are provided to demonstrate the superior fusion performance of the proposed algorithm over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
西河完成签到,获得积分10
1秒前
1秒前
英俊的铭应助咸蛋黄肉松采纳,获得10
1秒前
1秒前
英姑应助活菌泡泡采纳,获得10
2秒前
Schroenius发布了新的文献求助10
2秒前
2秒前
2秒前
Akim应助美满的金连采纳,获得10
3秒前
唠叨的无极完成签到,获得积分10
3秒前
俭朴的猫咪给俭朴的猫咪的求助进行了留言
4秒前
小奥雄完成签到,获得积分10
5秒前
5秒前
藏獒发布了新的文献求助10
5秒前
6秒前
彭于晏应助盼盼采纳,获得10
6秒前
诚心淇完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
由凡发布了新的文献求助10
8秒前
姚老表完成签到,获得积分10
8秒前
9秒前
Chan发布了新的文献求助10
9秒前
10秒前
酪酪Alona完成签到,获得积分10
10秒前
香蕉觅云应助魁梧的人达采纳,获得10
10秒前
swagfare发布了新的文献求助10
10秒前
龙玄泽应助lei采纳,获得10
10秒前
吴欣欣发布了新的文献求助10
11秒前
深情安青应助robust66采纳,获得10
11秒前
11秒前
11秒前
万能图书馆应助Schroenius采纳,获得10
11秒前
南巷酒肆发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559156
求助须知:如何正确求助?哪些是违规求助? 3133718
关于积分的说明 9403929
捐赠科研通 2833973
什么是DOI,文献DOI怎么找? 1557731
邀请新用户注册赠送积分活动 727632
科研通“疑难数据库(出版商)”最低求助积分说明 716383