Postsurface Selenization for High Performance Sb2S3 Planar Thin Film Solar Cells

材料科学 钝化 薄膜 X射线光电子能谱 光伏 光电子学 兴奋剂 拉曼光谱 异质结 肖特基势垒 能量转换效率 纳米技术 光伏系统 图层(电子) 化学工程 二极管 光学 电气工程 物理 工程类
作者
Shengjie Yuan,Hui Deng,Xiaokun Yang,Chao Hu,Jahangeer Khan,Wanneng Ye,Jiang Tang,Haisheng Song
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:4 (11): 2862-2870 被引量:115
标识
DOI:10.1021/acsphotonics.7b00858
摘要

Sb2S3 has attracted great research interest very recently as a promising absorber material for thin film photovoltaics because of their unique optical and electrical properties, binary compound and easy synthesis. Sb2S3 planar solar cells from evaporation method without hole-transport layer (HTM) assistance suffer from sulfur deficit vacancy and high back contact barrier. Herein, we developed a postsurface selenization treatment to Sb2S3 thin film in order to improve the device performance. The XRD, Raman, and UV–vis spectra indicated the treated film kept the typical characters of Sb2S3. TEM/EELS mapping of treated Sb2S3 film revealed that only surface adjacent section was partly selenized and formed Sb2(SxSe1–x)3 alloy. In addition, XPS results further unfolded that there was trace selenium doping in the bulk of Sb2S3 film. The treated HTM-free Sb2S3 based solar cells were fabricated and an improved efficiency of 4.17% was obtained. The obtained VOC of 0.714 V was the highest and the power conversion efficiency also reached the top value among HTM-free planar Sb2S3 solar cells. The nonencapsulated device exhibited high stability. After storing in ambient air for up to 100 days, the device could maintain 90% efficiency. Systematic materials and device characterizations were implemented to investigate the improvement mechanism for postsurface selenization. The back alloying could suppress the rear contact barrier to improve the fill factor and carrier extraction capability. The bulk Se-doping helped to passivate the interface and bulk defects so as to improve the CdS/Sb2S3 heterojunction quality and enhance the long-wavelength photon quantum yield. The robust treatment method with multifunctional effect holds great potential for new chalcogenide thin film solar cell optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lemon发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ccm应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
yzm发布了新的文献求助10
2秒前
2秒前
心心应助科研通管家采纳,获得10
2秒前
abccd123完成签到,获得积分10
2秒前
今后应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
77完成签到,获得积分10
3秒前
3秒前
4秒前
英姑应助八月宁静采纳,获得10
5秒前
上官若男应助万松辉采纳,获得10
6秒前
77发布了新的文献求助10
8秒前
研友_VZG7GZ应助yzm采纳,获得10
8秒前
可爱的函函应助应急食品采纳,获得10
9秒前
10秒前
汐颜紫雨完成签到,获得积分10
11秒前
12秒前
12秒前
fuyu98完成签到,获得积分10
13秒前
13秒前
mashibeo发布了新的文献求助30
15秒前
赵俊博发布了新的文献求助10
15秒前
盐焗小星球完成签到 ,获得积分10
15秒前
昏睡的朝雪完成签到,获得积分20
15秒前
GGMJ发布了新的文献求助10
16秒前
Aikesi完成签到,获得积分10
16秒前
lw不好找完成签到,获得积分10
17秒前
刻苦念桃发布了新的文献求助10
17秒前
pluto应助yuanying采纳,获得10
18秒前
万松辉发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073