Disturbed blood flow induces erosive injury to smooth muscle cell‐rich neointima and promotes thrombus formation in rabbit femoral arteries

新生内膜 血栓 纤维蛋白 医学 血小板 血管平滑肌 血流 解剖 病理 心脏病学 再狭窄 内科学 平滑肌 支架 免疫学
作者
Takahiro Sumi,Atsushi Yamashita,Shuntaro Matsuda,Shinya Goto,Kensaku Nishihira,Eiji Furukoji,Hiroshi Sugimura,H Kawahara,Takuroh Imamura,Kazuo Kitamura,Shozo Tamura,Yujiro Asada
出处
期刊:Journal of Thrombosis and Haemostasis [Wiley]
卷期号:8 (6): 1394-1402 被引量:53
标识
DOI:10.1111/j.1538-7836.2010.03843.x
摘要

Plaque erosion is a cause of atherothrombosis that preferentially occurs on smooth muscle cell (SMC)- and proteoglycan-rich rather than lipid-rich plaques. However, its underlying mechanisms remain unknown.To determine whether disturbed blood flow induces erosive injury and thrombus formation on SMC-rich neointima.Three weeks after balloon injury, SMC-rich neointima with increased tissue factor (TF) activity developed in rabbit femoral arteries that were narrowed with a vascular occluder to disturb blood flow after stenosis. Neointimal injury and thrombus formation were assessed at 15, 30, and 180 min after the vascular narrowing.Endothelial detachment, platelet adhesion and neointimal cell apoptosis became evident at the post-stenotic regions of all femoral arteries (n = 5) within 15 min of narrowing. Mural thrombi composed of platelet and fibrin developed after 30 min, and then occlusive thrombi were generated in three out of five vessels after 180 min. The identical vascular narrowing of normal femoral arteries also induced endothelial detachment with small platelet thrombi at post-stenotic regions, but fibrin and occlusive thrombi did not develop. Computational simulation analysis indicated that oscillatory shear stress contributes to the development of erosive damage to the neointima.These results suggest that disturbed post-stenotic blood flow can induce erosive injury in SMC-rich plaques and promote thrombus formation that results in vascular events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yangdayang发布了新的文献求助30
2秒前
3秒前
ajiu关注了科研通微信公众号
5秒前
刘企盼完成签到,获得积分10
6秒前
大橙子完成签到,获得积分10
7秒前
7秒前
zz完成签到 ,获得积分10
8秒前
生动的靖柏关注了科研通微信公众号
10秒前
xybjt完成签到 ,获得积分10
10秒前
小达发布了新的文献求助10
10秒前
11秒前
11秒前
木子发布了新的文献求助10
12秒前
13秒前
拽住小时候完成签到,获得积分10
13秒前
牛马要毕业完成签到,获得积分10
15秒前
15秒前
田田田chong完成签到,获得积分10
16秒前
jinzhen发布了新的文献求助10
16秒前
17秒前
全球十大法则完成签到,获得积分10
17秒前
铩羽发布了新的文献求助10
18秒前
18秒前
科研通AI5应助quit采纳,获得10
18秒前
18秒前
19秒前
易槐完成签到,获得积分10
19秒前
Akim应助北方的舟采纳,获得10
20秒前
21秒前
ajiu发布了新的文献求助10
23秒前
於松应助墨墨叻采纳,获得30
23秒前
23秒前
24秒前
26秒前
27秒前
28秒前
Mia发布了新的文献求助30
28秒前
28秒前
迟大猫应助JingP采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Introduction to Micromechanics and Nanomechanics 2nd Edition 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3536235
求助须知:如何正确求助?哪些是违规求助? 3114455
关于积分的说明 9316402
捐赠科研通 2812387
什么是DOI,文献DOI怎么找? 1545023
邀请新用户注册赠送积分活动 719717
科研通“疑难数据库(出版商)”最低求助积分说明 711531