Vertical integration of two-dimensional materials has recently emerged as an exciting method for the design of novel electronic and optoelectronic devices. Using density functional theory, we investigatethe structural and electronic properties of two heterostruc-tures, graphene/phosphorene (G/BP) and hexagonal boron nitride/phosphorene (BN/BP). We found that the interlayer distance, binding energy, and charge transfer in G/BP and BN/BP are similar. Interlayer noncovalentbonding is predicted due to the weak coupling between the pz orbital of BP and the {\pi} orbital of graphene and BN. A small amount of electron transfer from graphene and BN, scaling with the vertical strain, renders BP slightly n-doped for both heterostructures. Several attractive characteristics of BP, including direct band gap and linear dichroism, are preserved. However, a large redistribution of electrostatic potential across the interface is observed, which may significantly renormalize the carrier dynamics and affect the excitonic behavior of BP. Our work suggests that graphene and BN can be used not only as an effective capping layer to protect BP from its structural and chemical degradation while still maintain its major electronic characteristics, but also as an active layer to tune the carrier dynamics and optical properties of BP.