Automatic segmentation of the left ventricle in echocardiographic images using convolutional neural networks

分割 人工智能 豪斯多夫距离 计算机科学 卷积神经网络 模式识别(心理学) 心室 公制(单位) 模态(人机交互) 计算机视觉 医学 心脏病学 运营管理 经济
作者
Taeouk Kim,Mohammadali Hedayat,Veronica V. Vaitkus,Marek Bělohlávek,Vinayak R. Krishnamurthy,Iman Borazjani
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:11 (5): 1763-1781 被引量:29
标识
DOI:10.21037/qims-20-745
摘要

Two-dimensional echocardiography (2D echo) is the most widely used non-invasive imaging modality due to its fast acquisition time, low cost, and high temporal resolution. Boundary identification of left ventricle (LV) in 2D echo, i.e., image segmentation, is the first step to calculate relevant clinical parameters. Currently, LV segmentation in 2D echo is primarily conducted semi-manually. A fully-automatic segmentation of the LV wall needs further development.We evaluated the performance of the state-of-the-art convolutional neural networks (CNNs) for the segmentation of 2D echo images from 6 standard projections of the LV. We used two segmentation algorithms: U-net and segAN. The models were trained using an in-house dataset, which consists of 1,649 porcine images from 6 to 8 different pigs. In addition, a transfer learning approach was used for the segmentation of long-axis projections by training models with our database based on the previously trained weights obtained from Cardiac Acquisitions for Multi-structure Ultrasound Segmentation (CAMUS) dataset. The models were tested on a separate set of images from two other pigs by computing several metrics. The segmentation process was combined with a 3D reconstruction framework to quantify the physiological indices such as LV volumes and ejection fraction (EF).The average dice metric for the LV cavity was 0.90 and 0.91 for the U-net and segAN, respectively, which was higher than 0.82 for the level-set (P value: 3.31×10-25). The average Hausdorff distance for the LV cavity was 2.71 mm and 2.82 mm for the U-net and segAN, respectively, which was lower than 3.64 mm for the level-set (P value: 4.86×10-16). The LV shapes and volumes obtained using the CNN segmentation models were in good agreement with the results segmented by the experts. In addition, the differences of the calculated physiological parameters between two 3D reconstruction models segmented by the experts and CNNs were less than 15%.The results showed that both CNN models achieve higher performance on LV segmentation than the level-set method. The error of the reconstruction from automatic segmentation compared to the expert segmentation is less than 15%, which is within the 20% error of echo compared to the gold standard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jlkb完成签到,获得积分10
刚刚
ikun发布了新的文献求助10
刚刚
小林喜发布了新的文献求助10
2秒前
2秒前
小蘑菇应助旺仔冰墩墩采纳,获得10
2秒前
善学以致用应助JIE采纳,获得10
2秒前
李嘉琪发布了新的文献求助10
2秒前
3秒前
一秋一年完成签到,获得积分10
4秒前
ljy完成签到,获得积分10
4秒前
理来服完成签到,获得积分10
4秒前
火星上的听云完成签到,获得积分10
4秒前
Orange应助小爱同学采纳,获得10
5秒前
Akim应助格兰兔米兔采纳,获得10
6秒前
搜集达人应助你您采纳,获得10
6秒前
今后应助zzx采纳,获得10
6秒前
是小明啦发布了新的文献求助10
6秒前
maox1aoxin应助mhr采纳,获得30
6秒前
充电宝应助平平无奇采纳,获得10
6秒前
library2025发布了新的文献求助150
7秒前
7秒前
7秒前
小蘑菇应助byb采纳,获得10
7秒前
8秒前
科研通AI2S应助Hahawang采纳,获得10
8秒前
阿嘎普莱特完成签到,获得积分10
9秒前
9秒前
xingwen完成签到,获得积分10
10秒前
10秒前
囡囡完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
JIE发布了新的文献求助10
14秒前
卡皮巴拉发布了新的文献求助10
14秒前
科研通AI2S应助labxgr采纳,获得10
15秒前
yar应助火星上的听云采纳,获得10
15秒前
饱满绝施应助怕黑蓝采纳,获得10
15秒前
RARA-发布了新的文献求助10
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312684
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523532
捐赠科研通 2620981
什么是DOI,文献DOI怎么找? 1433226
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650255