Automatic segmentation of the left ventricle in echocardiographic images using convolutional neural networks

分割 人工智能 豪斯多夫距离 计算机科学 卷积神经网络 模式识别(心理学) 心室 公制(单位) 模态(人机交互) 计算机视觉 医学 心脏病学 运营管理 经济
作者
Taeouk Kim,Mohammadali Hedayat,Veronica V. Vaitkus,Marek Bělohlávek,Vinayak R. Krishnamurthy,Iman Borazjani
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:11 (5): 1763-1781 被引量:29
标识
DOI:10.21037/qims-20-745
摘要

Two-dimensional echocardiography (2D echo) is the most widely used non-invasive imaging modality due to its fast acquisition time, low cost, and high temporal resolution. Boundary identification of left ventricle (LV) in 2D echo, i.e., image segmentation, is the first step to calculate relevant clinical parameters. Currently, LV segmentation in 2D echo is primarily conducted semi-manually. A fully-automatic segmentation of the LV wall needs further development.We evaluated the performance of the state-of-the-art convolutional neural networks (CNNs) for the segmentation of 2D echo images from 6 standard projections of the LV. We used two segmentation algorithms: U-net and segAN. The models were trained using an in-house dataset, which consists of 1,649 porcine images from 6 to 8 different pigs. In addition, a transfer learning approach was used for the segmentation of long-axis projections by training models with our database based on the previously trained weights obtained from Cardiac Acquisitions for Multi-structure Ultrasound Segmentation (CAMUS) dataset. The models were tested on a separate set of images from two other pigs by computing several metrics. The segmentation process was combined with a 3D reconstruction framework to quantify the physiological indices such as LV volumes and ejection fraction (EF).The average dice metric for the LV cavity was 0.90 and 0.91 for the U-net and segAN, respectively, which was higher than 0.82 for the level-set (P value: 3.31×10-25). The average Hausdorff distance for the LV cavity was 2.71 mm and 2.82 mm for the U-net and segAN, respectively, which was lower than 3.64 mm for the level-set (P value: 4.86×10-16). The LV shapes and volumes obtained using the CNN segmentation models were in good agreement with the results segmented by the experts. In addition, the differences of the calculated physiological parameters between two 3D reconstruction models segmented by the experts and CNNs were less than 15%.The results showed that both CNN models achieve higher performance on LV segmentation than the level-set method. The error of the reconstruction from automatic segmentation compared to the expert segmentation is less than 15%, which is within the 20% error of echo compared to the gold standard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYQ完成签到 ,获得积分10
刚刚
李健的小迷弟应助haochi采纳,获得10
7秒前
qiancib202完成签到,获得积分10
14秒前
2316690509完成签到 ,获得积分10
14秒前
zozox完成签到 ,获得积分10
16秒前
乐瑶完成签到 ,获得积分10
19秒前
Hindiii完成签到,获得积分10
19秒前
haochi完成签到,获得积分10
19秒前
19秒前
夏日完成签到 ,获得积分10
23秒前
清风完成签到 ,获得积分10
24秒前
秦梦瑶瑶发布了新的文献求助10
25秒前
逆流的鱼完成签到 ,获得积分10
28秒前
28秒前
凌儿响叮当完成签到 ,获得积分10
28秒前
wwww完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
Tonald Yang完成签到 ,获得积分20
30秒前
优雅的平安完成签到 ,获得积分10
33秒前
小丸子完成签到 ,获得积分10
36秒前
丘比特应助秦梦瑶瑶采纳,获得10
36秒前
高挑的若雁完成签到 ,获得积分10
41秒前
不怕考试的赵无敌完成签到 ,获得积分10
43秒前
HXX19完成签到 ,获得积分10
44秒前
自由的无色完成签到 ,获得积分10
45秒前
刘三哥完成签到 ,获得积分10
48秒前
轩辕中蓝完成签到 ,获得积分10
51秒前
南风完成签到 ,获得积分10
52秒前
Acid完成签到 ,获得积分10
54秒前
汉堡包应助lihua采纳,获得10
57秒前
深情安青应助猪猪hero采纳,获得10
58秒前
跳跃小珍完成签到 ,获得积分10
1分钟前
ES完成签到 ,获得积分0
1分钟前
少年完成签到 ,获得积分10
1分钟前
jrzsy完成签到,获得积分10
1分钟前
Libgenxxxx完成签到,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
1分钟前
wang完成签到 ,获得积分10
1分钟前
peiter发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218