Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study

单层 过渡金属 结晶学 Atom(片上系统) 材料科学 金属 离子 化学 纳米技术 催化作用 计算机科学 生物化学 嵌入式系统 有机化学 冶金
作者
Dan Wang,Juan Zou,Li‐Ming Tang
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:68 (3): 037102-037102 被引量:3
标识
DOI:10.7498/aps.68.20181597
摘要

Chemical functionalization of two-dimensional transition metal dichalcogenides (TMDs) with hydrogen is an effective and economical method to synthesize monolayer TMDs and tune their electronic properties. We theoretically study the stabilities and electronic properties of chemisorbed H atoms on monolayer TMDs by using density-functional theory calculations. The result shows that there exists a more stable adsorption site in the layers of the monolayer <i>MX</i><sub>2</sub> (<i>M</i> = Mo, W; <i>X</i> = S, Se, Te) than its surface for hydrogen. In the case of the same cation, with the increase of the anion (<i>X</i><sup>2−</sup>) atomic number, the stronger the bonding between the H atom and the <i>MX</i><sub>2</sub> layer, the more stable the structure of the hydrogenated monolayer <i>MX</i><sub>2</sub> is. However, in the case of the same anion, the binding between the H atom and the <i>MX</i><sub>2</sub> layer becomes weaker as the atomic number of the cations increases. H atoms passes through one surface of the MS<sub>2</sub> to the other surface with a relatively small diffusion barrier of about 0.9 eV. So the H atoms can more easily go through the barrier. And for the H atom to go through the other monolayer <i>MX</i><sub>2</sub> (<i>M</i> = Mo, W; <i>X</i> = Se, Te), the diffusion barrier is about 1.2 eV. H atoms are difficult to pass through the barrier at this time. The singular diffusion behavior of H atoms in monolayer <i>MX</i><sub>2</sub> is conducible to understanding the stability of hydrogenated two-dimensional transition metal sulfide system. In addition, the surface hydrogenation and interlaminar hydrogenation have different effects on the electronic properties of monolayer <i>MX</i><sub>2</sub>, and mainly manifest themselves in the fact that the surface hydrogenation induces spontaneous magnetism and sharply reduces the band gap, but still retains the semiconductor properties of the original monolayer <i>MX</i><sub>2</sub>. However, interlaminar hydrogenation enables monolayer <i>MX</i><sub>2</sub> to directly realize the transition from semiconductor to metal. Interlaminar hydrogenation monolayer <i>MX</i><sub>2</sub> (<i>M</i> = Mo, W; <i>X</i> = S, Se) make the system generating magnetism, while when the anion is Te<sup>2−</sup>, the magnetism almost disappears. These results can provide theoretical guidance in understanding hydrogen functionalization of <i>MX</i><sub>2</sub> layer, and also present a certain theoretical basis for realizing the application of <i>MX</i><sub>2</sub> in nano-electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助FYP采纳,获得30
刚刚
英俊的铭应助时尚的穆采纳,获得10
刚刚
Artemis发布了新的文献求助10
1秒前
暴躁章鱼完成签到 ,获得积分10
1秒前
Hello应助kk采纳,获得10
1秒前
哈哈哈完成签到,获得积分10
1秒前
2秒前
充电宝应助lz采纳,获得10
3秒前
红磨坊ybw完成签到 ,获得积分10
4秒前
4秒前
josy发布了新的文献求助20
5秒前
111关闭了111文献求助
5秒前
5秒前
5秒前
W哇发布了新的文献求助10
5秒前
6秒前
Excalibur发布了新的文献求助10
6秒前
自信向梦完成签到,获得积分10
6秒前
zyl关闭了zyl文献求助
7秒前
Zhang发布了新的文献求助10
7秒前
大个应助125ljw采纳,获得10
7秒前
7秒前
8秒前
英姑应助Syening采纳,获得10
9秒前
9秒前
青岩发布了新的文献求助10
9秒前
zhangzhuopu发布了新的文献求助10
9秒前
9秒前
自信向梦发布了新的文献求助30
10秒前
请叫我风吹麦浪应助SQDHZJ采纳,获得10
10秒前
10秒前
10秒前
liusoojoo完成签到,获得积分10
11秒前
Teen完成签到 ,获得积分10
11秒前
Lucas应助动人的老黑采纳,获得10
11秒前
无心的无施完成签到,获得积分10
11秒前
11秒前
请叫我风吹麦浪应助Artemis采纳,获得10
12秒前
绝对快乐发布了新的文献求助10
12秒前
无限的绮晴完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461924
求助须知:如何正确求助?哪些是违规求助? 3055592
关于积分的说明 9048604
捐赠科研通 2745261
什么是DOI,文献DOI怎么找? 1506125
科研通“疑难数据库(出版商)”最低求助积分说明 696000
邀请新用户注册赠送积分活动 695539