Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation

竞争性内源性RNA 小RNA 乳腺癌 MCF-7型 癌基因 分子医学 生物 癌症 长非编码RNA 细胞周期 癌症研究 核糖核酸 计算生物学 基因 遗传学 人体乳房
作者
Hao Li,Xinglan An,Qi Li,Hao Yu,Ziyi Li
出处
期刊:Oncology Letters [Spandidos Publications]
卷期号:21 (2) 被引量:20
标识
DOI:10.3892/ol.2020.12365
摘要

Previous research has proven that 6‑thioguanine (6‑TG) inhibits the growth of MCF‑7 breast cancer cells. Accumulating evidence indicates that long non‑coding (lnc)RNAs are involved in the development of various cancer types as competitive endogenous (ce)RNA molecules. The present study was conducted to investigate the regulatory mechanism underlying the function of lncRNAs as ceRNA molecules in MCF‑7 cells and to identify more effective prognostic biomarkers for breast cancer treatment. The expression profiles of lncRNAs in untreated MCF‑7 cells and 6‑TG‑treated MCF‑7 cells were compared by RNA‑seq. The regulatory associations among lncRNAs, micro (mi)RNAs and mRNAs were analyzed and verified by the TargetScan, miRDB and miRTarBas databases. The ceRNA networks were constructed by Cytoscape. The expression levels of two lncRNAs and two miRNAs in the ceRNA network were measured by reverse transcription‑quantitative PCR. The OncoLnc and Kaplan‑Meier plotter network databases were utilized to determine the effects of lncRNA and miRNA expression on the survival of patients with breast cancer. A ceRNA network was constructed for MCF‑7 breast cancer cells treated with 6‑TG, and this network may provide valuable information for further research elucidating the molecular mechanism underlying the effects of 6‑TG on breast cancer. Moreover, LINC00324, MIR22HG, miR‑370‑3p and miR‑424‑5p were identified as potential prognostic and therapeutic biomarkers for breast cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助流星采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
Unstoppable发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
千叶儿完成签到,获得积分20
2秒前
一米阳光发布了新的文献求助10
2秒前
ding应助ppppp采纳,获得10
2秒前
科研通AI6.1应助11111采纳,获得10
2秒前
2秒前
月月发布了新的文献求助10
2秒前
RR发布了新的文献求助10
2秒前
NexusExplorer应助zql采纳,获得10
3秒前
顾矜应助王通采纳,获得10
3秒前
大模型应助一一采纳,获得10
3秒前
麦克发布了新的文献求助10
4秒前
传奇3应助102755采纳,获得10
4秒前
jy关闭了jy文献求助
4秒前
Ting发布了新的文献求助10
5秒前
李浩发布了新的文献求助10
5秒前
zy完成签到 ,获得积分10
5秒前
Qps发布了新的文献求助10
6秒前
友好雪枫完成签到,获得积分10
6秒前
jrzsy完成签到,获得积分10
7秒前
千叶儿发布了新的文献求助10
8秒前
8秒前
8秒前
叨叨发布了新的文献求助20
8秒前
9秒前
9秒前
今后应助sssssss采纳,获得10
10秒前
10秒前
姚龙完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
pluto应助稳重的秋天采纳,获得10
11秒前
12秒前
Yiran发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207