Nafion公司
膜
电导率
氧化物
电解质
质子交换膜燃料电池
离子电导率
质子输运
化学工程
多金属氧酸盐
甲醇
材料科学
高分子化学
化学
纳米技术
电极
有机化学
物理化学
电化学
催化作用
工程类
生物化学
冶金
作者
Bailing Liu,Bo Hu,Jing Du,Dongming Cheng,Hong‐Ying Zang,Xin Ge,Huaqiao Tan,Li Wang,Xiaozheng Duan,Jin Zhao,Wei Zhang,Yangguang Li,Zhong‐Min Su
标识
DOI:10.1002/anie.202012079
摘要
Abstract Fabricating proton exchange membranes (PEMs) with high ionic conductivity and ideal mechanical robustness through regulation of the membrane microstructures achieved by molecular‐level hybridization remains essential but challenging for the further development of high‐performance PEM fuel cells. In this work, by precisely hybridizing nano‐scaled bismuth oxide clusters into Nafion, we have fabricated the high‐performance hybrid membrane, Nafion‐Bi 12 ‐3 %, which showed a proton conductivity of 386 mS cm −1 at 80 °C in aqueous solution with low methanol permeability, and conserved the ideal mechanical and chemical stabilities as PEMs. Moreover, molecular dynamics (MD) simulation was employed to clarify the structural properties and the assembly mechanisms of the hybrid membrane on the molecular level. The maximum current density and power density of Nafion‐Bi 12 ‐3 % for direct methanol fuel cells reached to 432.7 mA cm −2 and 110.2 mW cm −2 , respectively. This work provides new insights into the design of versatile functional polymer electrolyte membranes through polyoxometalate hybridization.
科研通智能强力驱动
Strongly Powered by AbleSci AI