Deep learning method for localization and segmentation of abdominal CT

雅卡索引 分割 卷积神经网络 脂肪组织 计算机科学 腰椎 腰椎 人工智能 模式识别(心理学) 医学 核医学 解剖 内分泌学
作者
Setareh Dabiri,Karteek Popuri,Cydney Ma,Vincent Chow,Elizabeth M. Cespedes Feliciano,Bette J. Caan,Vickie E. Baracos,Mirza Faisal Beg
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:85: 101776-101776 被引量:46
标识
DOI:10.1016/j.compmedimag.2020.101776
摘要

Computed Tomography (CT) imaging is widely used for studying body composition, i.e., the proportion of muscle and fat tissues with applications in areas such as nutrition or chemotherapy dose design. In particular, axial CT slices from the 3rd lumbar (L3) vertebral location are commonly used for body composition analysis. However, selection of the third lumbar vertebral slice and the segmentation of muscle/fat in the slice is a tedious operation if performed manually. The objective of this study is to automatically find the middle axial slice at L3 level from a full or partial body CT scan volume and segment the skeletal muscle (SM), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and intermuscular adipose tissue (IMAT) on that slice. The proposed algorithm includes an L3 axial slice localization network followed by a muscle-fat segmentation network. The localization network is a fully convolutional classifier trained on more than 12,000 images. The segmentation network is a convolutional neural network with an encoder–decoder architecture. Three datasets with CT images taken for patients with different types of cancers are used for training and validation of the networks. The mean slice error of 0.87±2.54 was achieved for L3 slice localization on 1748 CT scan volumes. The performance of five class tissue segmentation network evaluated on two datasets with 1327 and 1202 test samples. The mean Jaccard score of 97% was achieved for SM and VAT tissue segmentation on 1327 images. The mean Jaccard scores of 98% and 83% are corresponding to SAT and IMAT tissue segmentation on the same dataset. The localization and segmentation network performance indicates the potential for fully automated body composition analysis with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
焱焱不忘完成签到,获得积分0
1秒前
塔恩沃特发布了新的文献求助30
1秒前
爆美完成签到,获得积分10
1秒前
Dawn_ZZZ完成签到,获得积分10
1秒前
2秒前
3秒前
企鹅发布了新的文献求助20
3秒前
3秒前
4秒前
Cryer2401发布了新的文献求助100
4秒前
4秒前
5秒前
理想三寻完成签到,获得积分10
5秒前
6秒前
Ava应助科研老炮采纳,获得10
6秒前
哈哈哈发布了新的文献求助10
6秒前
7秒前
7秒前
顺然发布了新的文献求助10
8秒前
秋刀鱼完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
李金洋发布了新的文献求助10
9秒前
9秒前
sunsaint发布了新的文献求助10
10秒前
司纤户羽发布了新的文献求助10
10秒前
齐天完成签到 ,获得积分10
10秒前
10秒前
虎虎虎虎完成签到 ,获得积分10
10秒前
10秒前
cheng完成签到,获得积分10
10秒前
11秒前
星辰大海应助Cryer2401采纳,获得30
12秒前
12秒前
大袁发布了新的文献求助10
12秒前
呆萌沛柔完成签到,获得积分10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958909
求助须知:如何正确求助?哪些是违规求助? 3505121
关于积分的说明 11122699
捐赠科研通 3236612
什么是DOI,文献DOI怎么找? 1788911
邀请新用户注册赠送积分活动 871431
科研通“疑难数据库(出版商)”最低求助积分说明 802794