亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning method for localization and segmentation of abdominal CT

雅卡索引 分割 卷积神经网络 脂肪组织 计算机科学 腰椎 腰椎 人工智能 模式识别(心理学) 医学 核医学 解剖 内分泌学
作者
Setareh Dabiri,Karteek Popuri,Cydney Ma,Vincent Chow,Elizabeth M. Cespedes Feliciano,Bette J. Caan,Vickie E. Baracos,Mirza Faisal Beg
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:85: 101776-101776 被引量:46
标识
DOI:10.1016/j.compmedimag.2020.101776
摘要

Computed Tomography (CT) imaging is widely used for studying body composition, i.e., the proportion of muscle and fat tissues with applications in areas such as nutrition or chemotherapy dose design. In particular, axial CT slices from the 3rd lumbar (L3) vertebral location are commonly used for body composition analysis. However, selection of the third lumbar vertebral slice and the segmentation of muscle/fat in the slice is a tedious operation if performed manually. The objective of this study is to automatically find the middle axial slice at L3 level from a full or partial body CT scan volume and segment the skeletal muscle (SM), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and intermuscular adipose tissue (IMAT) on that slice. The proposed algorithm includes an L3 axial slice localization network followed by a muscle-fat segmentation network. The localization network is a fully convolutional classifier trained on more than 12,000 images. The segmentation network is a convolutional neural network with an encoder–decoder architecture. Three datasets with CT images taken for patients with different types of cancers are used for training and validation of the networks. The mean slice error of 0.87±2.54 was achieved for L3 slice localization on 1748 CT scan volumes. The performance of five class tissue segmentation network evaluated on two datasets with 1327 and 1202 test samples. The mean Jaccard score of 97% was achieved for SM and VAT tissue segmentation on 1327 images. The mean Jaccard scores of 98% and 83% are corresponding to SAT and IMAT tissue segmentation on the same dataset. The localization and segmentation network performance indicates the potential for fully automated body composition analysis with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩完成签到 ,获得积分20
14秒前
17秒前
孙孙发布了新的文献求助10
22秒前
彭于晏应助蒙豆儿采纳,获得30
52秒前
1分钟前
蒙豆儿发布了新的文献求助30
1分钟前
依然灬聆听完成签到,获得积分10
1分钟前
Z可完成签到,获得积分10
1分钟前
科研通AI2S应助pxy采纳,获得10
1分钟前
orixero应助袁青寒采纳,获得10
2分钟前
2分钟前
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
5分钟前
嘻嘻完成签到,获得积分10
5分钟前
abc完成签到 ,获得积分10
5分钟前
lixuebin完成签到 ,获得积分10
7分钟前
NexusExplorer应助狂奔弟弟采纳,获得10
7分钟前
7分钟前
狂奔弟弟发布了新的文献求助10
7分钟前
狂奔弟弟完成签到,获得积分10
7分钟前
a61完成签到,获得积分10
7分钟前
8分钟前
zsc发布了新的文献求助10
8分钟前
HYQ完成签到 ,获得积分10
8分钟前
MchemG完成签到,获得积分0
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
Ava应助科研通管家采纳,获得10
9分钟前
沐雨微寒完成签到,获得积分10
9分钟前
科研通AI6应助马良采纳,获得10
10分钟前
科研通AI2S应助hairgod采纳,获得10
10分钟前
hairgod完成签到,获得积分10
11分钟前
Jasper应助科研通管家采纳,获得10
11分钟前
12分钟前
马良发布了新的文献求助10
12分钟前
科研通AI5应助马良采纳,获得10
13分钟前
bkagyin应助狂奔弟弟采纳,获得10
13分钟前
13分钟前
13分钟前
狂奔弟弟发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582292
求助须知:如何正确求助?哪些是违规求助? 4000077
关于积分的说明 12382091
捐赠科研通 3674945
什么是DOI,文献DOI怎么找? 2025541
邀请新用户注册赠送积分活动 1059261
科研通“疑难数据库(出版商)”最低求助积分说明 945875