Deep learning method for localization and segmentation of abdominal CT

雅卡索引 分割 卷积神经网络 脂肪组织 计算机科学 腰椎 腰椎 人工智能 模式识别(心理学) 医学 核医学 解剖 内分泌学
作者
Setareh Dabiri,Karteek Popuri,Cydney Ma,Vincent Chow,Elizabeth M. Cespedes Feliciano,Bette J. Caan,Vickie E. Baracos,Mirza Faisal Beg
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:85: 101776-101776 被引量:46
标识
DOI:10.1016/j.compmedimag.2020.101776
摘要

Computed Tomography (CT) imaging is widely used for studying body composition, i.e., the proportion of muscle and fat tissues with applications in areas such as nutrition or chemotherapy dose design. In particular, axial CT slices from the 3rd lumbar (L3) vertebral location are commonly used for body composition analysis. However, selection of the third lumbar vertebral slice and the segmentation of muscle/fat in the slice is a tedious operation if performed manually. The objective of this study is to automatically find the middle axial slice at L3 level from a full or partial body CT scan volume and segment the skeletal muscle (SM), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and intermuscular adipose tissue (IMAT) on that slice. The proposed algorithm includes an L3 axial slice localization network followed by a muscle-fat segmentation network. The localization network is a fully convolutional classifier trained on more than 12,000 images. The segmentation network is a convolutional neural network with an encoder–decoder architecture. Three datasets with CT images taken for patients with different types of cancers are used for training and validation of the networks. The mean slice error of 0.87±2.54 was achieved for L3 slice localization on 1748 CT scan volumes. The performance of five class tissue segmentation network evaluated on two datasets with 1327 and 1202 test samples. The mean Jaccard score of 97% was achieved for SM and VAT tissue segmentation on 1327 images. The mean Jaccard scores of 98% and 83% are corresponding to SAT and IMAT tissue segmentation on the same dataset. The localization and segmentation network performance indicates the potential for fully automated body composition analysis with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
停摆的指针应助三十块采纳,获得10
1秒前
科研小白完成签到,获得积分10
2秒前
刘金泽完成签到,获得积分10
2秒前
调研昵称发布了新的文献求助10
2秒前
ZS发布了新的文献求助10
3秒前
假面绅士发布了新的文献求助10
3秒前
SAW完成签到,获得积分10
4秒前
耍酷花卷完成签到,获得积分10
4秒前
gslscuer发布了新的文献求助10
5秒前
大个应助weiling采纳,获得10
5秒前
ddd完成签到,获得积分10
6秒前
十六完成签到,获得积分20
7秒前
7秒前
7秒前
Jasper应助派大珊采纳,获得10
8秒前
sg发布了新的文献求助10
8秒前
10秒前
ZS完成签到,获得积分10
11秒前
假面绅士发布了新的文献求助10
11秒前
11秒前
13秒前
Nic发布了新的文献求助10
14秒前
M20小陈完成签到,获得积分10
15秒前
包子妹妹发布了新的文献求助10
16秒前
很菜的研究生完成签到,获得积分10
17秒前
17秒前
科大小刘发布了新的文献求助10
17秒前
sg完成签到,获得积分10
18秒前
weiling完成签到,获得积分20
18秒前
明理的雨南完成签到 ,获得积分10
18秒前
chenlin完成签到,获得积分10
19秒前
19秒前
上邪完成签到 ,获得积分10
20秒前
babyuer完成签到,获得积分10
20秒前
万能图书馆应助CIXI采纳,获得10
20秒前
21秒前
gslscuer完成签到,获得积分10
21秒前
22秒前
假面绅士发布了新的文献求助10
22秒前
23秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082743
求助须知:如何正确求助?哪些是违规求助? 2736027
关于积分的说明 7539806
捐赠科研通 2385554
什么是DOI,文献DOI怎么找? 1264970
科研通“疑难数据库(出版商)”最低求助积分说明 612857
版权声明 597685