Role of Zirconia in Indium Oxide-Catalyzed CO2Hydrogenation to Methanol

单斜晶系 催化作用 立方氧化锆 四方晶系 共沉淀 氧化物 无机化学 化学 材料科学 结晶学 化学工程 晶体结构 有机化学 冶金 工程类 陶瓷
作者
Matthias S. Frei,Cecilia Mondelli,Alessia Cesarini,Frank Krumeich,Roland Hauert,Joseph Stewart,Daniel Curulla‐Ferré,Javier Pérez‐Ramírez
出处
期刊:ACS Catalysis 卷期号:10 (2): 1133-1145 被引量:216
标识
DOI:10.1021/acscatal.9b03305
摘要

Monoclinic zirconia has been uncovered as a carrier able to substantially boost the activity of indium oxide for CO2 hydrogenation to methanol. Here, electronic, geometric, and interfacial phenomena associated with this peculiar effect are investigated. Generating mixed In–Zr oxides by coprecipitation does not improve performance, excluding a primary role of electronic parameters. Because even only 1 mol % of indium stabilizes the metastable tetragonal phase of zirconia, the relevance of its crystalline structure is explored in impregnated solids. Both tetragonal and monoclinic ZrO2 permit epitaxial growth of In2O3, but a more pronounced lattice mismatching leads to a lower dispersion of the oxide on the second, which is observed in the form of subnanometric islands on the carrier, and to more pronounced tensile forces. The latter triggers the formation of a surplus of oxygen vacancies only in this system, which is in line with its greatly enhanced indium-specific activity. Hence, a deposition synthesis method is essential to unlock the role of monoclinic zirconia. According to kinetic analyses, the monoclinic ZrO2-based catalyst can also better activate both reactants, likely because of a superior character of oxygen vacancies on supported In2O3 and a direct contribution of zirconia to CO2 activation on its own oxygen vacancies, which was investigated in comparison with In2O3 supported on alumina and ceria. Elucidating the nature of the active sites at the phase boundary and the impact of the defect chemistry of zirconia are identified as aspects to be prioritized in upcoming studies to shed further light on interfacial effects in this relevant catalytic system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AAA完成签到,获得积分10
1秒前
江梦松发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
细心映寒发布了新的文献求助10
3秒前
小马甲应助zjuroc采纳,获得20
3秒前
yuhaha发布了新的文献求助30
3秒前
斯文败类应助直率尔芙采纳,获得10
4秒前
4秒前
科研通AI5应助学术蟑螂采纳,获得10
4秒前
4秒前
fei菲飞完成签到,获得积分20
4秒前
4秒前
4秒前
图苏完成签到,获得积分10
5秒前
6秒前
6秒前
善良友安发布了新的文献求助10
6秒前
6秒前
卑以自牧发布了新的文献求助10
7秒前
顺心的半兰完成签到 ,获得积分20
7秒前
selfevidbet发布了新的文献求助30
7秒前
7秒前
文忉嫣发布了新的文献求助10
7秒前
打工羊完成签到,获得积分10
7秒前
白衣未央完成签到,获得积分10
7秒前
阳光向秋发布了新的文献求助10
7秒前
7秒前
QL应助图苏采纳,获得30
8秒前
8秒前
hy完成签到,获得积分10
8秒前
粗暴的君浩完成签到,获得积分10
8秒前
8秒前
9秒前
大个应助立波采纳,获得10
9秒前
乐乐应助柔弱凡松采纳,获得10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762