磁共振成像
三维超声
医学
分割
超声波
计算机科学
放射科
人工智能
特征选择
手术计划
胎儿
怀孕
生物
遗传学
作者
Jordina Torrents‐Barrena,Núria Monill,Gemma Piella,E. Gratacós,E. Eixarch,Mario Ceresa,Miguel Á. González Ballester
标识
DOI:10.1016/j.acra.2019.11.006
摘要
Recent advances in fetal imaging open the door to enhanced detection of fetal disorders and computer-assisted surgical planning. However, precise segmentation of womb's tissues is challenging due to motion artifacts caused by fetal movements and maternal respiration during acquisition. This work aims to efficiently segment different intrauterine tissues in fetal magnetic resonance imaging (MRI) and 3D ultrasound (US). First, a large set of ninety-four radiomic features are extracted to characterize the mother uterus, placenta, umbilical cord, fetal lungs, and brain. The optimal features for each anatomy are identified using both K-best and Sequential Forward Feature Selection techniques. These features are then fed to a Support Vector Machine with instance balancing to accurately segment the intrauterine anatomies. To the best of our knowledge, this is the first time that Radiomics is expanded from classification tasks to segmentation purposes to deal with challenging fetal images. In addition, we evaluate several state-of-the-art deep learning-based segmentation approaches. Validation is extensively performed on a set of 60 axial MRI and 3D US images from pathological and clinical cases. Our results suggest that combining the selected 10 radiomic features per anatomy along with DeepLabV3+ or BiSeNet architectures for MRI, and PSPNet or Tiramisu for 3D US, can lead to the highest fetal / maternal tissue segmentation performance, robustness, informativeness, and heterogeneity. Therefore, this work opens new avenues for advancement of segmentation techniques and, in particular, for improved fetal surgical planning.
科研通智能强力驱动
Strongly Powered by AbleSci AI