Assessment of Radiomics and Deep Learning for the Segmentation of Fetal and Maternal Anatomy in Magnetic Resonance Imaging and Ultrasound

磁共振成像 三维超声 医学 分割 超声波 计算机科学 放射科 人工智能 特征选择 手术计划 胎儿 怀孕 生物 遗传学
作者
Jordina Torrents‐Barrena,Núria Monill,Gemma Piella,E. Gratacós,E. Eixarch,Mario Ceresa,Miguel Á. González Ballester
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (2): 173-188 被引量:33
标识
DOI:10.1016/j.acra.2019.11.006
摘要

Recent advances in fetal imaging open the door to enhanced detection of fetal disorders and computer-assisted surgical planning. However, precise segmentation of womb's tissues is challenging due to motion artifacts caused by fetal movements and maternal respiration during acquisition. This work aims to efficiently segment different intrauterine tissues in fetal magnetic resonance imaging (MRI) and 3D ultrasound (US). First, a large set of ninety-four radiomic features are extracted to characterize the mother uterus, placenta, umbilical cord, fetal lungs, and brain. The optimal features for each anatomy are identified using both K-best and Sequential Forward Feature Selection techniques. These features are then fed to a Support Vector Machine with instance balancing to accurately segment the intrauterine anatomies. To the best of our knowledge, this is the first time that Radiomics is expanded from classification tasks to segmentation purposes to deal with challenging fetal images. In addition, we evaluate several state-of-the-art deep learning-based segmentation approaches. Validation is extensively performed on a set of 60 axial MRI and 3D US images from pathological and clinical cases. Our results suggest that combining the selected 10 radiomic features per anatomy along with DeepLabV3+ or BiSeNet architectures for MRI, and PSPNet or Tiramisu for 3D US, can lead to the highest fetal / maternal tissue segmentation performance, robustness, informativeness, and heterogeneity. Therefore, this work opens new avenues for advancement of segmentation techniques and, in particular, for improved fetal surgical planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通通完成签到,获得积分10
刚刚
Dalia完成签到,获得积分10
刚刚
牧尔芙完成签到 ,获得积分10
刚刚
1秒前
浮游应助KEYANFEIWU采纳,获得10
1秒前
2秒前
3秒前
3秒前
Alex发布了新的文献求助10
3秒前
wxz1998发布了新的文献求助10
4秒前
lwj完成签到,获得积分10
4秒前
toptop发布了新的文献求助10
4秒前
4秒前
旺仔完成签到,获得积分10
5秒前
nn完成签到,获得积分10
5秒前
changping应助摆烂小鱼采纳,获得10
5秒前
DUKE发布了新的文献求助10
6秒前
浪者漫心发布了新的文献求助10
6秒前
sunzine完成签到,获得积分10
6秒前
7秒前
7秒前
屈屈发布了新的文献求助10
7秒前
科研通AI5应助刘1采纳,获得10
7秒前
星辰大海应助juju采纳,获得10
7秒前
嘟嘟完成签到,获得积分10
7秒前
8秒前
8秒前
法克鱿发布了新的文献求助10
9秒前
ohceria发布了新的文献求助10
9秒前
云里发布了新的文献求助10
10秒前
Steven完成签到 ,获得积分10
10秒前
左耳钉应助Aroojshams采纳,获得10
11秒前
33333完成签到,获得积分10
11秒前
你好你好发布了新的文献求助10
11秒前
12秒前
科研通AI5应助苹果绿采纳,获得10
12秒前
13秒前
13秒前
15秒前
端庄新烟完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416