Assessment of Radiomics and Deep Learning for the Segmentation of Fetal and Maternal Anatomy in Magnetic Resonance Imaging and Ultrasound

磁共振成像 三维超声 医学 分割 超声波 计算机科学 放射科 人工智能 特征选择 手术计划 胎儿 怀孕 生物 遗传学
作者
Jordina Torrents‐Barrena,Núria Monill,Gemma Piella,E. Gratacós,E. Eixarch,Mario Ceresa,Miguel Á. González Ballester
出处
期刊:Academic Radiology [Elsevier]
卷期号:28 (2): 173-188 被引量:27
标识
DOI:10.1016/j.acra.2019.11.006
摘要

Recent advances in fetal imaging open the door to enhanced detection of fetal disorders and computer-assisted surgical planning. However, precise segmentation of womb's tissues is challenging due to motion artifacts caused by fetal movements and maternal respiration during acquisition. This work aims to efficiently segment different intrauterine tissues in fetal magnetic resonance imaging (MRI) and 3D ultrasound (US). First, a large set of ninety-four radiomic features are extracted to characterize the mother uterus, placenta, umbilical cord, fetal lungs, and brain. The optimal features for each anatomy are identified using both K-best and Sequential Forward Feature Selection techniques. These features are then fed to a Support Vector Machine with instance balancing to accurately segment the intrauterine anatomies. To the best of our knowledge, this is the first time that Radiomics is expanded from classification tasks to segmentation purposes to deal with challenging fetal images. In addition, we evaluate several state-of-the-art deep learning-based segmentation approaches. Validation is extensively performed on a set of 60 axial MRI and 3D US images from pathological and clinical cases. Our results suggest that combining the selected 10 radiomic features per anatomy along with DeepLabV3+ or BiSeNet architectures for MRI, and PSPNet or Tiramisu for 3D US, can lead to the highest fetal / maternal tissue segmentation performance, robustness, informativeness, and heterogeneity. Therefore, this work opens new avenues for advancement of segmentation techniques and, in particular, for improved fetal surgical planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助风登楼采纳,获得10
2秒前
小二郎应助Cassie采纳,获得10
3秒前
nenoaowu发布了新的文献求助10
3秒前
Yukiiiii完成签到,获得积分10
4秒前
4秒前
5秒前
adds完成签到,获得积分20
6秒前
JamesPei应助淡然的元容采纳,获得10
8秒前
隐形曼青应助糖果采纳,获得10
8秒前
9秒前
Yiphy发布了新的文献求助50
9秒前
zero桥完成签到,获得积分10
11秒前
充电宝应助Ste采纳,获得10
12秒前
12秒前
14秒前
15秒前
WH发布了新的文献求助10
16秒前
背后瑾瑜发布了新的文献求助10
17秒前
19秒前
852应助不发一区不改名采纳,获得10
19秒前
20秒前
20秒前
唯有发布了新的文献求助10
20秒前
CY完成签到,获得积分10
23秒前
背后瑾瑜完成签到,获得积分10
24秒前
彭于晏应助松本润不足采纳,获得10
25秒前
香蕉觅云应助哦啦啦采纳,获得10
25秒前
CY发布了新的文献求助10
25秒前
明亮靖柔发布了新的文献求助10
26秒前
McQueen发布了新的文献求助10
28秒前
cc发布了新的文献求助10
28秒前
李N完成签到,获得积分10
30秒前
30秒前
Ade阿德发布了新的文献求助10
30秒前
30秒前
quhayley应助ok采纳,获得10
31秒前
wtg发布了新的文献求助10
36秒前
刘娇娇完成签到,获得积分10
36秒前
斯文败类应助青安采纳,获得10
36秒前
JKIKU发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149289
求助须知:如何正确求助?哪些是违规求助? 2800391
关于积分的说明 7839862
捐赠科研通 2457980
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706