Assessment of Radiomics and Deep Learning for the Segmentation of Fetal and Maternal Anatomy in Magnetic Resonance Imaging and Ultrasound

磁共振成像 三维超声 医学 分割 超声波 计算机科学 放射科 人工智能 特征选择 手术计划 胎儿 怀孕 生物 遗传学
作者
Jordina Torrents‐Barrena,Núria Monill,Gemma Piella,E. Gratacós,E. Eixarch,Mario Ceresa,Miguel Á. González Ballester
出处
期刊:Academic Radiology [Elsevier]
卷期号:28 (2): 173-188 被引量:27
标识
DOI:10.1016/j.acra.2019.11.006
摘要

Recent advances in fetal imaging open the door to enhanced detection of fetal disorders and computer-assisted surgical planning. However, precise segmentation of womb's tissues is challenging due to motion artifacts caused by fetal movements and maternal respiration during acquisition. This work aims to efficiently segment different intrauterine tissues in fetal magnetic resonance imaging (MRI) and 3D ultrasound (US). First, a large set of ninety-four radiomic features are extracted to characterize the mother uterus, placenta, umbilical cord, fetal lungs, and brain. The optimal features for each anatomy are identified using both K-best and Sequential Forward Feature Selection techniques. These features are then fed to a Support Vector Machine with instance balancing to accurately segment the intrauterine anatomies. To the best of our knowledge, this is the first time that Radiomics is expanded from classification tasks to segmentation purposes to deal with challenging fetal images. In addition, we evaluate several state-of-the-art deep learning-based segmentation approaches. Validation is extensively performed on a set of 60 axial MRI and 3D US images from pathological and clinical cases. Our results suggest that combining the selected 10 radiomic features per anatomy along with DeepLabV3+ or BiSeNet architectures for MRI, and PSPNet or Tiramisu for 3D US, can lead to the highest fetal / maternal tissue segmentation performance, robustness, informativeness, and heterogeneity. Therefore, this work opens new avenues for advancement of segmentation techniques and, in particular, for improved fetal surgical planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小柠檬发布了新的文献求助10
1秒前
风思雅完成签到,获得积分10
1秒前
文艺雯发布了新的文献求助30
1秒前
阿尔法完成签到,获得积分10
1秒前
纯真电源完成签到,获得积分20
1秒前
lili完成签到 ,获得积分10
2秒前
2秒前
wanci应助小豆芽儿采纳,获得10
3秒前
麻烦~完成签到,获得积分10
3秒前
4秒前
华仔应助gaos采纳,获得10
4秒前
迪迦发布了新的文献求助30
5秒前
糊涂的勒完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
seven完成签到,获得积分10
5秒前
wzxxxx完成签到,获得积分20
5秒前
6秒前
fffzy完成签到,获得积分10
6秒前
MADKAI发布了新的文献求助50
6秒前
lkn完成签到,获得积分10
6秒前
浦肯野举报单薄凌蝶求助涉嫌违规
7秒前
爱撒娇的橘子完成签到,获得积分10
7秒前
7秒前
Owen应助皮蛋瘦肉周采纳,获得10
8秒前
李漂亮完成签到,获得积分10
8秒前
222完成签到 ,获得积分10
8秒前
wzxxxx发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
文艺谷蓝完成签到,获得积分10
10秒前
丰富的复天完成签到,获得积分10
10秒前
干净的寒天完成签到,获得积分10
10秒前
科研通AI5应助WNL采纳,获得10
11秒前
无聊的面包完成签到,获得积分10
11秒前
11秒前
JIN完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678