亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of Radiomics and Deep Learning for the Segmentation of Fetal and Maternal Anatomy in Magnetic Resonance Imaging and Ultrasound

磁共振成像 三维超声 医学 分割 超声波 计算机科学 放射科 人工智能 特征选择 手术计划 胎儿 怀孕 生物 遗传学
作者
Jordina Torrents‐Barrena,Núria Monill,Gemma Piella,E. Gratacós,E. Eixarch,Mario Ceresa,Miguel Á. González Ballester
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (2): 173-188 被引量:27
标识
DOI:10.1016/j.acra.2019.11.006
摘要

Recent advances in fetal imaging open the door to enhanced detection of fetal disorders and computer-assisted surgical planning. However, precise segmentation of womb's tissues is challenging due to motion artifacts caused by fetal movements and maternal respiration during acquisition. This work aims to efficiently segment different intrauterine tissues in fetal magnetic resonance imaging (MRI) and 3D ultrasound (US). First, a large set of ninety-four radiomic features are extracted to characterize the mother uterus, placenta, umbilical cord, fetal lungs, and brain. The optimal features for each anatomy are identified using both K-best and Sequential Forward Feature Selection techniques. These features are then fed to a Support Vector Machine with instance balancing to accurately segment the intrauterine anatomies. To the best of our knowledge, this is the first time that Radiomics is expanded from classification tasks to segmentation purposes to deal with challenging fetal images. In addition, we evaluate several state-of-the-art deep learning-based segmentation approaches. Validation is extensively performed on a set of 60 axial MRI and 3D US images from pathological and clinical cases. Our results suggest that combining the selected 10 radiomic features per anatomy along with DeepLabV3+ or BiSeNet architectures for MRI, and PSPNet or Tiramisu for 3D US, can lead to the highest fetal / maternal tissue segmentation performance, robustness, informativeness, and heterogeneity. Therefore, this work opens new avenues for advancement of segmentation techniques and, in particular, for improved fetal surgical planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
6秒前
8秒前
科研通AI2S应助玄之又玄采纳,获得10
13秒前
风趣煎蛋发布了新的文献求助10
14秒前
天天快乐应助MOD采纳,获得10
18秒前
26秒前
feifei发布了新的文献求助10
28秒前
54秒前
HYQ完成签到 ,获得积分10
57秒前
1分钟前
欣喜的人龙完成签到 ,获得积分10
1分钟前
VERITAS发布了新的文献求助10
1分钟前
Foxjker完成签到 ,获得积分10
1分钟前
复杂的夜香完成签到 ,获得积分10
1分钟前
xpqiu完成签到,获得积分10
1分钟前
orixero应助libob采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
佳佳发布了新的文献求助10
2分钟前
2分钟前
小鹿完成签到,获得积分10
2分钟前
风趣煎蛋发布了新的文献求助10
2分钟前
2分钟前
风趣煎蛋完成签到,获得积分10
2分钟前
小鹿发布了新的文献求助10
2分钟前
2分钟前
2分钟前
testmanfuxk完成签到,获得积分10
2分钟前
3分钟前
libob发布了新的文献求助10
3分钟前
3分钟前
思源应助zsp采纳,获得30
3分钟前
3分钟前
领导范儿应助556采纳,获得10
3分钟前
Persist6578完成签到 ,获得积分10
4分钟前
半城微凉应助科研通管家采纳,获得10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214