An adaptive multi-domain feature joint optimization framework based on composite kernels and ant colony optimization for motor imagery EEG classification

计算机科学 脑-机接口 蚁群优化算法 人工智能 判别式 支持向量机 特征(语言学) 模式识别(心理学) 随机森林 核(代数) 运动表象 脑电图 心理学 语言学 哲学 数学 组合数学 精神科
作者
Minmin Miao,Wenbin Zhang,Wenjun Hu,Ruiqin Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:61: 101994-101994 被引量:14
标识
DOI:10.1016/j.bspc.2020.101994
摘要

Brain computer interface (BCI) is a novel technology that translates human intention into command to control external device. Common spatial pattern (CSP) algorithm is most frequently applied for feature engineering in motor imagery (MI) based BCI system. How to select the most suitable spatial channels, temporal & frequency parameters for different people before CSP is still a challenging issue which greatly affects the performance of MI based BCI system. In this paper, we introduce an adaptive multi-domain feature joint optimization framework. Specifically, random forest (RF) and composite kernel support vector machine (CKSVM) algorithms are used to measure the significances of different spatial channels and local temporal-frequency segments. An ant colony optimization (ACO) based scheme is proposed to search the most suitable spatial channels and temporal-frequency segments. We evaluated the effectiveness of the proposed algorithm on public BCI competition III data set IVa and two self-collected MI EEG datasets. For BCI competition III data set IVa, our method outperforms some other close related algorithms in the literature. For the two self-collected datasets, compared to the traditional manual parameter setting, the classification performance is proven to significantly improve (more than 15%) adopting our adaptive multi-domain parameters. Since our proposed method can simultaneously and automatically optimize subject-specific features in the entire spatial-temporal-frequency domains, the most discriminative CSP features can be selected and the performance of MI EEG classification is significantly improved. Thus, our research is a useful complement to the BCI field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuan关注了科研通微信公众号
刚刚
bkagyin应助迪迦采纳,获得30
刚刚
wocao完成签到 ,获得积分10
刚刚
彧辰完成签到 ,获得积分10
1秒前
1秒前
感动语蝶发布了新的文献求助30
2秒前
幽默的辣白菜完成签到,获得积分10
2秒前
粉红色泡泡关注了科研通微信公众号
2秒前
2秒前
xue关闭了xue文献求助
2秒前
2秒前
3秒前
3秒前
WuchangI发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
胡杨树2006完成签到,获得积分10
4秒前
阮红亮完成签到,获得积分10
5秒前
陈陈完成签到,获得积分10
5秒前
所所应助桢桢树采纳,获得10
5秒前
6秒前
6秒前
马保国123完成签到,获得积分10
6秒前
6秒前
乔苏惠娜完成签到,获得积分10
6秒前
斯文幻儿发布了新的文献求助10
7秒前
7秒前
快乐小狗完成签到,获得积分10
7秒前
7秒前
ppg123应助dddd采纳,获得10
8秒前
Dream Luminator完成签到,获得积分10
8秒前
8秒前
KVBVB完成签到,获得积分10
8秒前
搁浅完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
cici发布了新的文献求助10
9秒前
123完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650