抗氧化剂
秀丽隐杆线虫
水解物
化学
生物化学
氧化应激
谷胱甘肽
药理学
生物
食品科学
酶
水解
基因
作者
Jingyi Gu,Qiaowei Li,Jing Liu,Zhongdu Ye,Tao Feng,Ge Wang,Weimin Wang,Yongjun Zhang
标识
DOI:10.1016/j.ijbiomac.2020.11.160
摘要
The present study was designed to explore the in vivo-antioxidant capacity and the probable mechanism of AAPs-H, prepared from Auricularia auricula polysaccharides with the optimal extraction conditions by Box–Behnken design and acid hydrolysis, using Caenorhabditis elegans as a model organism. The effects of AAPs-H on the locomotion behavior, life span, antioxidant-related enzymes activities, and antioxidants levels in C. elegans were studied. Furthermore, the potentials of AAPs-H in up-regulating the expression of antioxidant-related genes in C. elegans, such as skn-1, sod-3 and sir-2.1, were also discussed. AAPs-H demonstrated a highly significant protective effect against the damage caused by paraquat, could significantly increase U-Turn frequency of worms (p < 0.01), extend their lifespan, enhance antioxidant systems including GR by 63.96% (p < 0.05), GSH-Px by 71.16% (p < 0.01), SOD by 78.65% (p < 0.01) and CAT by 98.52% (p < 0.01), increase the level of GSH by 28.12% (p < 0.05), and decrease the level of MDA by 39.29% (p < 0.01). The qRT-PCR results showed that AAPs-H could up regulate mRNA expression levels of skn-1, sod-1, sod-2, sod-3 and sir-2.1 in wild-type C. elegans (>1.6 fold) when treated with the concentration of 0.4 mg/mL (p < 0.05 or p < 0.01). Our studies provide evidence that AAPs-H improves antioxidant defense system, and up-regulation of oxidative stress related genes for prevention of stress damage in C. elegans.
科研通智能强力驱动
Strongly Powered by AbleSci AI