亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning with convolutional neural network in the assessment of breast cancer molecular subtypes based on US images: a multicenter retrospective study

医学 乳腺癌 神经组阅片室 卷积神经网络 队列 超声波 回顾性队列研究 乳房成像 乳腺超声检查 放射科 癌症 相关性 人工智能 肿瘤科 内科学 乳腺摄影术 神经学 计算机科学 精神科 几何学 数学
作者
Meng Jiang,Di Zhang,Shi-Chu Tang,Xiaomao Luo,Zhi-Rui Chuan,Wenzhi Lv,Fan Jiang,Xuejun Ni,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (6): 3673-3682 被引量:68
标识
DOI:10.1007/s00330-020-07544-8
摘要

To evaluate the prediction performance of deep convolutional neural network (DCNN) based on ultrasound (US) images for the assessment of breast cancer molecular subtypes. A dataset of 4828 US images from 1275 patients with primary breast cancer were used as the training samples. DCNN models were constructed primarily to predict the four St. Gallen molecular subtypes and secondarily to identify luminal disease from non-luminal disease based on the ground truth from immunohistochemical of whole tumor surgical specimen. US images from two other institutions were retained as independent test sets to validate the system. The models’ performance was analyzed using per-class accuracy, positive predictive value (PPV), and Matthews correlation coefficient (MCC). The model achieved good performance in identifying the four breast cancer molecular subtypes in the two test sets, with accuracy ranging from 80.07% (95% CI, 76.49–83.23%) to 97.02% (95% CI, 95.22–98.16%) and 87.94% (95% CI, 85.08–90.31%) to 98.83% (95% CI, 97.60–99.43) for the two test cohorts for each sub-category, respectively. In terms of 4-class weighted average MCC, the model achieved 0.59 for test cohort A and 0.79 for test cohort B. Specifically, the DCNN also yielded good diagnostic performance in discriminating luminal disease from non-luminal disease, with a PPV of 93.29% (95% CI, 90.63–95.23%) and 88.21% (95% CI, 85.12–90.73%) for the two test cohorts, respectively. Using pretreatment US images of the breast cancer, deep learning model enables the assessment of molecular subtypes with high diagnostic accuracy. Clinical trial number: ChiCTR1900027676 • Deep convolutional neural network (DCNN) helps clinicians assess tumor features with accuracy. • Multicenter retrospective study shows that DCNN derived from pretreatment ultrasound imagine improves the prediction of breast cancer molecular subtypes. • Management of patients becomes more precise based on the DCNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
archer01发布了新的文献求助10
20秒前
maria_takayama关注了科研通微信公众号
25秒前
archer01完成签到,获得积分10
26秒前
科目三应助archer01采纳,获得10
29秒前
量子星尘发布了新的文献求助10
34秒前
41秒前
KINGAZX完成签到 ,获得积分10
48秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
科研通AI2S应助kaka采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
沙与沫完成签到 ,获得积分10
2分钟前
Krim完成签到 ,获得积分10
2分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
Tiger完成签到,获得积分10
2分钟前
搜集达人应助Tiger采纳,获得10
3分钟前
Akim应助sfx采纳,获得10
3分钟前
3分钟前
lijiauyi1994发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
lijiauyi1994完成签到,获得积分10
3分钟前
3分钟前
矢思然完成签到,获得积分10
4分钟前
4分钟前
斯文败类应助精明晓刚采纳,获得10
4分钟前
4分钟前
无辜笑容发布了新的文献求助10
4分钟前
4分钟前
大模型应助加绒采纳,获得30
4分钟前
精明晓刚发布了新的文献求助10
4分钟前
精明晓刚完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264