Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications

激光雷达 人工智能 计算机视觉 计算机科学 目标检测 卷积神经网络 帧(网络) 对象(语法) 测距 帧速率 鉴定(生物学) 特征提取 视觉对象识别的认知神经科学 传感器融合 模式识别(心理学) 遥感 地理 电信 植物 生物
作者
Xiangmo Zhao,Pengpeng Sun,Zhigang Xu,Haigen Min,Hongkai Yu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 4901-4913 被引量:220
标识
DOI:10.1109/jsen.2020.2966034
摘要

It is vital that autonomous vehicles acquire accurate and real-time information about objects in their vicinity, which fully guarantees the safety of the passengers and vehicle in various environments. Three-dimensional light detection and ranging (3D LIDAR) sensors can directly obtain the position and geometric structure of an object within its detection range, whereas the use of vision cameras is most suitable for object recognition. Accordingly, in this paper, we present a novel object detection and identification method that fuses the complementary information obtained by two types of sensors. First, we utilise 3D LIDAR data to generate accurate object-region proposals. Then, these candidates are mapped onto the image space from which regions of interest (ROI) of the proposals are selected and input to a convolutional neural network (CNN) for further object recognition. To precisely identify the sizes of all the objects, we combine the features of the last three layers of the CNN to extract multi-scale features from the ROIs. The evaluation results obtained on the KITTI dataset demonstrate that: (1) unlike sliding windows that produce thousands of candidate object-region proposals, 3D LIDAR provides an average of 86 real candidates per frame and the minimal recall rate is better than 95%, which greatly decreases the extraction time; (2) The average processing time for each frame of the proposed method is only 66.79 ms, which meets the real-time demand of autonomous vehicles; (3) The average identification accuracies of our method for cars and pedestrians at a moderate level of difficulty are 89.04% and 78.18%, respectively, which is better than those of most previous methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhoumin完成签到,获得积分10
刚刚
刚刚
高高问夏完成签到,获得积分10
1秒前
1秒前
2秒前
jingjing完成签到 ,获得积分10
2秒前
3秒前
君尧发布了新的文献求助10
3秒前
FashionBoy应助王宽宽宽采纳,获得10
3秒前
3秒前
科研通AI6应助王志新采纳,获得10
3秒前
4秒前
魏家乐完成签到,获得积分10
4秒前
wyuwqhjp发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
酷酷怀曼完成签到,获得积分10
5秒前
华仔应助QWE采纳,获得10
5秒前
li发布了新的文献求助10
5秒前
hezhuyou发布了新的文献求助10
5秒前
江山完成签到,获得积分10
5秒前
5秒前
6秒前
斯文败类应助安安采纳,获得10
7秒前
7秒前
8秒前
8秒前
娃娃菜妮发布了新的文献求助10
8秒前
orange发布了新的文献求助10
8秒前
9秒前
去玩儿发布了新的文献求助10
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
滕可燕完成签到,获得积分10
9秒前
10秒前
小蘑菇应助刚国忠采纳,获得10
10秒前
mylove应助Sid采纳,获得10
11秒前
承乐发布了新的文献求助30
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836