Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications

激光雷达 人工智能 计算机视觉 计算机科学 目标检测 卷积神经网络 帧(网络) 对象(语法) 测距 帧速率 鉴定(生物学) 特征提取 视觉对象识别的认知神经科学 传感器融合 模式识别(心理学) 遥感 地理 电信 植物 生物
作者
Xiangmo Zhao,Pengpeng Sun,Zhigang Xu,Haigen Min,Hongkai Yu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:20 (9): 4901-4913 被引量:220
标识
DOI:10.1109/jsen.2020.2966034
摘要

It is vital that autonomous vehicles acquire accurate and real-time information about objects in their vicinity, which fully guarantees the safety of the passengers and vehicle in various environments. Three-dimensional light detection and ranging (3D LIDAR) sensors can directly obtain the position and geometric structure of an object within its detection range, whereas the use of vision cameras is most suitable for object recognition. Accordingly, in this paper, we present a novel object detection and identification method that fuses the complementary information obtained by two types of sensors. First, we utilise 3D LIDAR data to generate accurate object-region proposals. Then, these candidates are mapped onto the image space from which regions of interest (ROI) of the proposals are selected and input to a convolutional neural network (CNN) for further object recognition. To precisely identify the sizes of all the objects, we combine the features of the last three layers of the CNN to extract multi-scale features from the ROIs. The evaluation results obtained on the KITTI dataset demonstrate that: (1) unlike sliding windows that produce thousands of candidate object-region proposals, 3D LIDAR provides an average of 86 real candidates per frame and the minimal recall rate is better than 95%, which greatly decreases the extraction time; (2) The average processing time for each frame of the proposed method is only 66.79 ms, which meets the real-time demand of autonomous vehicles; (3) The average identification accuracies of our method for cars and pedestrians at a moderate level of difficulty are 89.04% and 78.18%, respectively, which is better than those of most previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CA完成签到,获得积分10
1秒前
1秒前
沟通亿心发布了新的文献求助10
1秒前
活力的冬日完成签到,获得积分10
2秒前
旺旺小仙发布了新的文献求助10
4秒前
bobo1129完成签到,获得积分10
4秒前
5秒前
肉肉的小屋完成签到,获得积分10
5秒前
顺心孤云发布了新的文献求助10
5秒前
6秒前
8秒前
赘婿应助沉静天思采纳,获得10
9秒前
10秒前
10秒前
11秒前
迅速易云完成签到,获得积分10
11秒前
Neon完成签到,获得积分10
12秒前
huiya发布了新的文献求助10
12秒前
13秒前
澡雪发布了新的文献求助10
14秒前
思源应助甘博采纳,获得10
14秒前
Glufo发布了新的文献求助10
15秒前
blingl发布了新的文献求助30
16秒前
17秒前
Evooolet发布了新的文献求助10
19秒前
mm完成签到,获得积分10
20秒前
缓慢平蓝发布了新的文献求助10
21秒前
22秒前
小巧书雪完成签到,获得积分10
24秒前
在水一方应助认真的三问采纳,获得10
25秒前
25秒前
26秒前
啊啊发布了新的文献求助10
28秒前
Uuuuuuumi发布了新的文献求助10
30秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
薇薇发布了新的文献求助10
31秒前
huiya发布了新的文献求助10
32秒前
32秒前
yar应助小巧书雪采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975755
求助须知:如何正确求助?哪些是违规求助? 3520108
关于积分的说明 11200829
捐赠科研通 3256492
什么是DOI,文献DOI怎么找? 1798298
邀请新用户注册赠送积分活动 877509
科研通“疑难数据库(出版商)”最低求助积分说明 806403