Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications

激光雷达 人工智能 计算机视觉 计算机科学 目标检测 卷积神经网络 帧(网络) 对象(语法) 测距 帧速率 鉴定(生物学) 特征提取 视觉对象识别的认知神经科学 传感器融合 模式识别(心理学) 遥感 地理 电信 植物 生物
作者
Xiangmo Zhao,Pengpeng Sun,Zhigang Xu,Haigen Min,Hongkai Yu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:20 (9): 4901-4913 被引量:220
标识
DOI:10.1109/jsen.2020.2966034
摘要

It is vital that autonomous vehicles acquire accurate and real-time information about objects in their vicinity, which fully guarantees the safety of the passengers and vehicle in various environments. Three-dimensional light detection and ranging (3D LIDAR) sensors can directly obtain the position and geometric structure of an object within its detection range, whereas the use of vision cameras is most suitable for object recognition. Accordingly, in this paper, we present a novel object detection and identification method that fuses the complementary information obtained by two types of sensors. First, we utilise 3D LIDAR data to generate accurate object-region proposals. Then, these candidates are mapped onto the image space from which regions of interest (ROI) of the proposals are selected and input to a convolutional neural network (CNN) for further object recognition. To precisely identify the sizes of all the objects, we combine the features of the last three layers of the CNN to extract multi-scale features from the ROIs. The evaluation results obtained on the KITTI dataset demonstrate that: (1) unlike sliding windows that produce thousands of candidate object-region proposals, 3D LIDAR provides an average of 86 real candidates per frame and the minimal recall rate is better than 95%, which greatly decreases the extraction time; (2) The average processing time for each frame of the proposed method is only 66.79 ms, which meets the real-time demand of autonomous vehicles; (3) The average identification accuracies of our method for cars and pedestrians at a moderate level of difficulty are 89.04% and 78.18%, respectively, which is better than those of most previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣青槐完成签到,获得积分10
1秒前
科隆龙完成签到,获得积分10
2秒前
2秒前
饱满一手完成签到 ,获得积分10
2秒前
99完成签到,获得积分10
4秒前
枕星发布了新的文献求助10
4秒前
drlq2022完成签到,获得积分10
5秒前
王山完成签到,获得积分10
6秒前
自觉寒梦完成签到,获得积分10
7秒前
ding应助缥缈一刀采纳,获得10
7秒前
pakiorder发布了新的文献求助10
7秒前
专心搞学术完成签到,获得积分10
7秒前
bkagyin应助zzcherished采纳,获得10
9秒前
你怎么这么可爱啊完成签到,获得积分10
9秒前
10秒前
研友_Lmg1gZ完成签到,获得积分10
10秒前
Crazyer完成签到,获得积分10
10秒前
Shuey完成签到,获得积分10
11秒前
XXXXH完成签到,获得积分10
11秒前
Z可完成签到 ,获得积分10
12秒前
momo123完成签到 ,获得积分10
12秒前
高兴的书竹完成签到 ,获得积分10
13秒前
mp5完成签到,获得积分10
14秒前
薯条一克完成签到 ,获得积分10
14秒前
zzcherished完成签到,获得积分10
15秒前
阿军完成签到,获得积分10
15秒前
糊涂的皮皮虾完成签到 ,获得积分10
16秒前
big ben完成签到 ,获得积分10
16秒前
可以的完成签到,获得积分10
17秒前
小瓶盖完成签到 ,获得积分10
17秒前
19秒前
辛勤的泽洋完成签到 ,获得积分10
21秒前
YXHTCM完成签到,获得积分10
23秒前
陈艺鹏完成签到,获得积分10
25秒前
nuistd完成签到,获得积分10
25秒前
大陆完成签到,获得积分0
26秒前
阿烨完成签到,获得积分10
27秒前
文章快快来完成签到,获得积分10
28秒前
31秒前
顺利兰完成签到 ,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029