亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications

激光雷达 人工智能 计算机视觉 计算机科学 目标检测 卷积神经网络 帧(网络) 对象(语法) 测距 帧速率 鉴定(生物学) 特征提取 视觉对象识别的认知神经科学 传感器融合 模式识别(心理学) 遥感 地理 植物 电信 生物
作者
Xiangmo Zhao,Pengpeng Sun,Zhigang Xu,Haigen Min,Hongkai Yu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:20 (9): 4901-4913 被引量:220
标识
DOI:10.1109/jsen.2020.2966034
摘要

It is vital that autonomous vehicles acquire accurate and real-time information about objects in their vicinity, which fully guarantees the safety of the passengers and vehicle in various environments. Three-dimensional light detection and ranging (3D LIDAR) sensors can directly obtain the position and geometric structure of an object within its detection range, whereas the use of vision cameras is most suitable for object recognition. Accordingly, in this paper, we present a novel object detection and identification method that fuses the complementary information obtained by two types of sensors. First, we utilise 3D LIDAR data to generate accurate object-region proposals. Then, these candidates are mapped onto the image space from which regions of interest (ROI) of the proposals are selected and input to a convolutional neural network (CNN) for further object recognition. To precisely identify the sizes of all the objects, we combine the features of the last three layers of the CNN to extract multi-scale features from the ROIs. The evaluation results obtained on the KITTI dataset demonstrate that: (1) unlike sliding windows that produce thousands of candidate object-region proposals, 3D LIDAR provides an average of 86 real candidates per frame and the minimal recall rate is better than 95%, which greatly decreases the extraction time; (2) The average processing time for each frame of the proposed method is only 66.79 ms, which meets the real-time demand of autonomous vehicles; (3) The average identification accuracies of our method for cars and pedestrians at a moderate level of difficulty are 89.04% and 78.18%, respectively, which is better than those of most previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
22秒前
浮游应助科研通管家采纳,获得10
42秒前
秋日思语发布了新的文献求助10
46秒前
56秒前
希望天下0贩的0应助lanzhou采纳,获得10
1分钟前
Zoe完成签到 ,获得积分10
1分钟前
常有李发布了新的文献求助10
1分钟前
酷波er应助当里个当采纳,获得10
1分钟前
1分钟前
1分钟前
当里个当发布了新的文献求助10
1分钟前
常有李完成签到,获得积分10
1分钟前
2分钟前
科研小白发布了新的文献求助10
2分钟前
dynamoo应助Escaso采纳,获得200
2分钟前
2分钟前
科研小白完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
科研小白发布了新的文献求助10
2分钟前
ph完成签到 ,获得积分10
2分钟前
2分钟前
Escaso发布了新的文献求助200
2分钟前
2分钟前
追寻师完成签到 ,获得积分10
3分钟前
MchemG完成签到,获得积分0
3分钟前
3分钟前
lanzhou发布了新的文献求助10
3分钟前
Escaso应助dynamoo采纳,获得200
4分钟前
安详的曲奇完成签到,获得积分10
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
惑梦梦完成签到,获得积分10
5分钟前
健壮的迎蕾完成签到 ,获得积分10
5分钟前
Panther完成签到,获得积分10
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
DongYirong应助科研通管家采纳,获得20
6分钟前
lyy完成签到 ,获得积分10
7分钟前
8分钟前
赝品也烂漫完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540790
求助须知:如何正确求助?哪些是违规求助? 3974578
关于积分的说明 12310675
捐赠科研通 3641798
什么是DOI,文献DOI怎么找? 2005368
邀请新用户注册赠送积分活动 1040801
科研通“疑难数据库(出版商)”最低求助积分说明 930011