已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Object Detection and Classification of Heat Emitting Objects from Infrared Images Based on Deep Learning

计算机科学 人工智能 卷积神经网络 对比度(视觉) 对象(语法) 深度学习 定向梯度直方图 计算机视觉 目标检测 直方图 特征(语言学) 特征提取 过程(计算) 模式识别(心理学) 上下文图像分类 视觉对象识别的认知神经科学 图像(数学) 语言学 哲学 操作系统
作者
Abeer D. Algarni
出处
期刊:Multimedia Tools and Applications [Springer Science+Business Media]
卷期号:79 (19-20): 13403-13426 被引量:14
标识
DOI:10.1007/s11042-020-08616-z
摘要

Object detection from infrared (IR) images recently attracted attention of researches. There are several techniques that can be performed on images in order to detect objects. Deep learning is an efficient technique among these techniques as it merges the feature extraction in the classification process. This paper presents a deep-learning-based approach that detects whether the image includes a certain object or not. In addition, it considers the scenario of object classification that has not been given attention in the literature for IR images. The importance of multi-object classification is to maintain the ability to discriminate between objects of interest and trivial or discarded objects in the IR images or image sequences of very poor contrast. The suggested deep learning model is based on Convolutional Neural Networks (CNNs). Two scenarios are included in this study. The first scenario is to detect a single object from an IR image. The second one is to detect multiple objects from IR images. Both scenarios have been studied and simulated at different Signal-to-Noise Ratios (SNR) on self-recoded as well as standard IR images. The proposed scenarios have been tested and validated by comparison with the traditional approach based on Histogram of Gradients (HoG) technique that is popularly considered for object detection. Moreover, a comparison with other state-of-the-art methods is presented. Simulation results reveal that the HoG approach may fail with IR images due to the low contrast of these images, while the proposed approach succeeds and achieves an accuracy level of 100 % in both studied scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
庸俗肤浅发布了新的文献求助10
刚刚
1秒前
ding应助江蹇采纳,获得10
1秒前
ooo完成签到 ,获得积分10
1秒前
B站萧亚轩发布了新的文献求助10
2秒前
宇航发布了新的文献求助10
3秒前
Summertrain完成签到,获得积分10
4秒前
peanuttt完成签到,获得积分10
4秒前
4秒前
JJ关闭了JJ文献求助
5秒前
JasperChan发布了新的文献求助10
7秒前
司徒不正完成签到 ,获得积分10
8秒前
imchenyin完成签到,获得积分10
9秒前
12秒前
yydragen应助成就海云采纳,获得30
13秒前
跳跃的访琴完成签到 ,获得积分10
14秒前
郑同学完成签到,获得积分10
15秒前
B站萧亚轩发布了新的文献求助10
15秒前
Lucas应助农夫采纳,获得10
15秒前
yydragen应助庸俗肤浅采纳,获得30
15秒前
15秒前
17秒前
深情安青应助陈媛采纳,获得10
18秒前
飞云之下发布了新的文献求助10
19秒前
peanuttt发布了新的文献求助10
20秒前
是一颗大树呀完成签到 ,获得积分10
21秒前
君寻完成签到 ,获得积分10
22秒前
慕青应助逝水无痕采纳,获得10
23秒前
Akim应助IMIke采纳,获得10
23秒前
liuling完成签到,获得积分10
24秒前
aa发布了新的文献求助10
24秒前
25秒前
26秒前
小二郎应助yyy采纳,获得10
27秒前
28秒前
思有发布了新的文献求助10
28秒前
llnysl完成签到 ,获得积分10
28秒前
小兵发布了新的文献求助10
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959835
求助须知:如何正确求助?哪些是违规求助? 3506093
关于积分的说明 11127809
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789445
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021