亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Object Detection and Classification of Heat Emitting Objects from Infrared Images Based on Deep Learning

计算机科学 人工智能 卷积神经网络 对比度(视觉) 对象(语法) 深度学习 定向梯度直方图 计算机视觉 目标检测 直方图 特征(语言学) 特征提取 过程(计算) 模式识别(心理学) 上下文图像分类 视觉对象识别的认知神经科学 图像(数学) 语言学 哲学 操作系统
作者
Abeer D. Algarni
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:79 (19-20): 13403-13426 被引量:14
标识
DOI:10.1007/s11042-020-08616-z
摘要

Object detection from infrared (IR) images recently attracted attention of researches. There are several techniques that can be performed on images in order to detect objects. Deep learning is an efficient technique among these techniques as it merges the feature extraction in the classification process. This paper presents a deep-learning-based approach that detects whether the image includes a certain object or not. In addition, it considers the scenario of object classification that has not been given attention in the literature for IR images. The importance of multi-object classification is to maintain the ability to discriminate between objects of interest and trivial or discarded objects in the IR images or image sequences of very poor contrast. The suggested deep learning model is based on Convolutional Neural Networks (CNNs). Two scenarios are included in this study. The first scenario is to detect a single object from an IR image. The second one is to detect multiple objects from IR images. Both scenarios have been studied and simulated at different Signal-to-Noise Ratios (SNR) on self-recoded as well as standard IR images. The proposed scenarios have been tested and validated by comparison with the traditional approach based on Histogram of Gradients (HoG) technique that is popularly considered for object detection. Moreover, a comparison with other state-of-the-art methods is presented. Simulation results reveal that the HoG approach may fail with IR images due to the low contrast of these images, while the proposed approach succeeds and achieves an accuracy level of 100 % in both studied scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文无敌完成签到,获得积分10
5秒前
上好佳完成签到 ,获得积分10
10秒前
15秒前
16秒前
lucky发布了新的文献求助10
19秒前
李嘉诚完成签到,获得积分10
22秒前
cloud完成签到,获得积分10
23秒前
lucky完成签到,获得积分10
29秒前
渟柠完成签到,获得积分10
35秒前
36秒前
jianwuzhou发布了新的文献求助10
38秒前
43秒前
49秒前
逮劳完成签到 ,获得积分10
55秒前
1分钟前
万邦德完成签到,获得积分10
1分钟前
酷波er应助IdleDoc采纳,获得10
1分钟前
FashionBoy应助南江悍匪采纳,获得10
1分钟前
星辰大海应助小昏采纳,获得10
1分钟前
Akim应助七一藕采纳,获得10
1分钟前
xiaomaihua完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得60
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
小昏发布了新的文献求助10
1分钟前
SDNUDRUG完成签到,获得积分10
1分钟前
Hellenzz发布了新的文献求助10
1分钟前
开朗大雁完成签到 ,获得积分10
1分钟前
共享精神应助Zert采纳,获得10
1分钟前
1分钟前
爆米花应助啦啦啦就好采纳,获得10
1分钟前
1分钟前
Hellenzz完成签到,获得积分10
1分钟前
柔弱的纸鹤完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345722
求助须知:如何正确求助?哪些是违规求助? 4480561
关于积分的说明 13946480
捐赠科研通 4378124
什么是DOI,文献DOI怎么找? 2405626
邀请新用户注册赠送积分活动 1398183
关于科研通互助平台的介绍 1370666