已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Object Detection and Classification of Heat Emitting Objects from Infrared Images Based on Deep Learning

计算机科学 人工智能 卷积神经网络 对比度(视觉) 对象(语法) 深度学习 定向梯度直方图 计算机视觉 目标检测 直方图 特征(语言学) 特征提取 过程(计算) 模式识别(心理学) 上下文图像分类 视觉对象识别的认知神经科学 图像(数学) 语言学 哲学 操作系统
作者
Abeer D. Algarni
出处
期刊:Multimedia Tools and Applications [Springer Science+Business Media]
卷期号:79 (19-20): 13403-13426 被引量:14
标识
DOI:10.1007/s11042-020-08616-z
摘要

Object detection from infrared (IR) images recently attracted attention of researches. There are several techniques that can be performed on images in order to detect objects. Deep learning is an efficient technique among these techniques as it merges the feature extraction in the classification process. This paper presents a deep-learning-based approach that detects whether the image includes a certain object or not. In addition, it considers the scenario of object classification that has not been given attention in the literature for IR images. The importance of multi-object classification is to maintain the ability to discriminate between objects of interest and trivial or discarded objects in the IR images or image sequences of very poor contrast. The suggested deep learning model is based on Convolutional Neural Networks (CNNs). Two scenarios are included in this study. The first scenario is to detect a single object from an IR image. The second one is to detect multiple objects from IR images. Both scenarios have been studied and simulated at different Signal-to-Noise Ratios (SNR) on self-recoded as well as standard IR images. The proposed scenarios have been tested and validated by comparison with the traditional approach based on Histogram of Gradients (HoG) technique that is popularly considered for object detection. Moreover, a comparison with other state-of-the-art methods is presented. Simulation results reveal that the HoG approach may fail with IR images due to the low contrast of these images, while the proposed approach succeeds and achieves an accuracy level of 100 % in both studied scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北克完成签到 ,获得积分10
5秒前
6秒前
宋浩奇完成签到 ,获得积分10
7秒前
uikymh完成签到 ,获得积分0
7秒前
SimonShaw完成签到,获得积分10
9秒前
phh完成签到 ,获得积分10
9秒前
Orange应助Moment采纳,获得10
10秒前
laipuling发布了新的文献求助10
11秒前
哈基米德应助QiQiqiqi123采纳,获得20
11秒前
13秒前
14秒前
李绩完成签到,获得积分10
14秒前
Lucas应助wzh采纳,获得10
15秒前
15秒前
zxer发布了新的文献求助10
17秒前
时不言完成签到 ,获得积分10
18秒前
renzhenuexi发布了新的文献求助10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
xxfsx应助科研通管家采纳,获得10
20秒前
tuanheqi应助科研通管家采纳,获得150
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
xxfsx应助科研通管家采纳,获得10
20秒前
21秒前
21秒前
21秒前
Omni完成签到,获得积分10
21秒前
22秒前
23秒前
七色光完成签到,获得积分10
23秒前
南宫秃发布了新的文献求助10
24秒前
英俊的铭应助laipuling采纳,获得10
24秒前
活泼的煎饼完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185578
求助须知:如何正确求助?哪些是违规求助? 4370957
关于积分的说明 13611619
捐赠科研通 4223228
什么是DOI,文献DOI怎么找? 2316267
邀请新用户注册赠送积分活动 1314876
关于科研通互助平台的介绍 1263826