分解水
材料科学
催化作用
电化学
化学工程
纳米技术
镍
电极
化学
冶金
光催化
物理化学
生物化学
工程类
作者
Lei Dai,Zhe‐Ning Chen,Liuxiao Li,Peiqun Yin,Zhengqing Liu,Hua Zhang
标识
DOI:10.1002/adma.201906915
摘要
The efficiency of splitting water into hydrogen and oxygen is highly dependent on the catalyst used. Herein, ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets, referred to as Ni/Ni(OH)2 nanosheets, with superior water splitting activity are synthesized by a partial reduction strategy. This synthetic strategy confers the heterostructured Ni/Ni(OH)2 nanosheets with abundant Ni(0)-Ni(II) active interfaces for hydrogen evolution reaction (HER) and Ni(II) defects as transitional active sites for oxygen evolution reaction (OER). The obtained Ni/Ni(OH)2 nanosheets exhibit noble metal-like electrocatalytic activities toward overall water splitting in alkaline condition, to offer 10 mA cm-2 in HER and OER, the required overpotentials are only 77 and 270 mV, respectively. Based on such an outstanding activity, a water splitting electrolysis cell using the Ni/Ni(OH)2 nanosheets as the cathode and anode electrocatalysts has been successfully built. When the output voltage of the electrolytic cell is 1.59 V, a current density of 10 mA cm-2 can be obtained. Moreover, the durability of Ni/Ni(OH)2 nanosheets in the alkaline electrolyte is much better than that of noble metals. No obvious performance decay is observed after 20 h of catalysis. This facile strategy paves the way for designing highly active non-precious-metal catalyst to generate both hydrogen and oxygen by electrolyzing water at room temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI