清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging

数字土壤制图 克里金 土壤科学 土壤图 环境科学 空间变异性 土壤水分 土壤测量 插值(计算机图形学) 遥感 校准 含水量 Pedotransfer函数 统计 数学 地质学 计算机科学 导水率 岩土工程 计算机图形学(图像) 动画
作者
Yakun Zhang,Wenjun Ji,Daniel Saurette,Tahmid Huq Easher,Hongyi Li,Zhou Shi,Viacheslav I. Adamchuk,Asim Biswas
出处
期刊:Geoderma [Elsevier]
卷期号:366: 114253-114253 被引量:62
标识
DOI:10.1016/j.geoderma.2020.114253
摘要

Three-dimensional digital soil mapping (3D-DSM) quantifies both the horizontal and the vertical variability of soil properties. Most current studies in 3D-DSM were based on either one-dimensional profile depth functions or two-dimensional horizontal interpolation techniques, which did not allow true 3D visualization of spatial soil heterogeneity. Only a few studies have utilized the 3D variograms for mapping. Recent advances in proximal soil sensing technologies allow measurement and prediction of soil properties rapidly at multiple depths which could serve as input data for DSM. Various soil physical and chemical properties have already shown either direct or indirect relationships with the proximal soil sensing data. This study aims to test the methodology of 3D-DSM by incorporating a 3D regression kriging (RK) with multiple proximal soil sensing techniques. In this study, vis-NIR spectra were collected in-situ at 148 locations to about 1-m depth using the Veris® P4000 soil profiler at Field 26 of Macdonald Farm, McGill University. Additionally, 32 soil cores were collected out of the 148 locations to 1-m maximum depth and sectioned at 10-cm depth intervals for laboratory analysis of volumetric water content (VWC), soil organic matter (SOM), and clay content. Cubist spectral models were developed for each soil property at the 32 locations and then predicted to the 148 locations, which were then randomly split into calibration (70%, 103 locations) and validation (30%, 45 locations) datasets for mapping. The 3D-RK method included a trend prediction between calibration dataset and environmental covariates (including apparent soil electrical conductivity, gamma-ray radiation, and elevation) and a residual kriging. The generalized linear model (GLM), regression tree (RT), and random forest (RF) models were compared for trend prediction. The covariates were also simulated 100 times using sequential Gaussian simulations to fit into 3D-RK and calculate model uncertainty. As a result, complete 3D digital soil maps with uncertainty were developed. We found that the RF model outperformed GLM and RT in regard to interpreting non-linear soil-landscape relationships and resulting in marginally higher validation accuracy and smaller prediction uncertainty for VWC and clay. The GLM model resulted in slightly better validation results and smaller model uncertainty for SOM only. SOM and clay showed large horizontal and vertical variability and affected the spatial distribution of VWC. The validation accuracy was higher in the soil surface for most soil properties due to the uniform environment in the plow layer and sufficient environmental covariates collected at the soil surface. The mapping uncertainty increased with depth for VWC and clay content but decreased with depth for SOM because SOM content decreases with depth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
10秒前
electricelectric完成签到,获得积分0
45秒前
Huzhu应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
47秒前
调皮醉波完成签到 ,获得积分10
1分钟前
1分钟前
爱思考的小笨笨完成签到,获得积分10
1分钟前
闻巷雨完成签到 ,获得积分10
1分钟前
Akim应助VDC采纳,获得10
1分钟前
2分钟前
VDC发布了新的文献求助10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
ZYP应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
3分钟前
瘦瘦的枫叶完成签到 ,获得积分10
3分钟前
nikishoon发布了新的文献求助10
3分钟前
Antonio完成签到 ,获得积分0
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
ZYP应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
llll完成签到 ,获得积分0
5分钟前
深情安青应助池雨采纳,获得10
5分钟前
mmmmmmgm完成签到 ,获得积分10
6分钟前
顾矜应助wyling采纳,获得10
6分钟前
julienCCC完成签到,获得积分10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
ZYP应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498422
求助须知:如何正确求助?哪些是违规求助? 4595652
关于积分的说明 14449590
捐赠科研通 4528514
什么是DOI,文献DOI怎么找? 2481546
邀请新用户注册赠送积分活动 1465666
关于科研通互助平台的介绍 1438429