亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning

计算机科学 图形 知识图 人工智能 机器学习 路径(计算) 理论计算机科学 程序设计语言
作者
Daqian Shi,Ting Wang,Hao Xing,Hao Xu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:195: 105618-105618 被引量:199
标识
DOI:10.1016/j.knosys.2020.105618
摘要

E-learners face a large amount of fragmented learning content during e-learning. How to extract and organize this learning content is the key to achieving the established learning target, especially for non-experts. Reasonably arranging the order of the learning objects to generate a well-defined learning path can help the e-learner complete the learning target efficiently and systematically. Currently, knowledge-graph-based learning path recommendation algorithms are attracting the attention of researchers in this field. However, these methods only connect learning objects using single relationships, which cannot generate diverse learning paths to satisfy different learning needs in practice. To overcome this challenge, this paper proposes a learning path recommendation model based on a multidimensional knowledge graph framework. The main contributions of this paper are as follows. Firstly, we have designed a multidimensional knowledge graph framework that separately stores learning objects organized in several classes. Then, we have proposed six main semantic relationships between learning objects in the knowledge graph. Secondly, a learning path recommendation model is designed for satisfying different learning needs based on the multidimensional knowledge graph framework, which can generate and recommend customized learning paths according to the e-learner’s target learning object. The experiment results indicate that the proposed model can generate and recommend qualified personalized learning paths to improve the learning experiences of e-learners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽夜雪完成签到,获得积分10
38秒前
懒懒洋洋洋完成签到 ,获得积分10
38秒前
40秒前
47秒前
Prime完成签到 ,获得积分10
57秒前
1分钟前
twk发布了新的文献求助10
1分钟前
在水一方应助twk采纳,获得10
1分钟前
1分钟前
1分钟前
迷茫的一代完成签到,获得积分10
2分钟前
2分钟前
研友_VZG7GZ应助芭乐侠采纳,获得30
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
3分钟前
芭乐侠发布了新的文献求助30
3分钟前
柚又完成签到,获得积分10
4分钟前
科研通AI5应助失眠的霸采纳,获得50
4分钟前
4分钟前
失眠的霸发布了新的文献求助50
4分钟前
章鱼完成签到,获得积分10
5分钟前
索谓完成签到 ,获得积分10
5分钟前
杨震发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
6分钟前
123发布了新的文献求助10
6分钟前
Augustines完成签到,获得积分10
6分钟前
123完成签到,获得积分10
6分钟前
草木发布了新的文献求助10
7分钟前
桐桐应助clhkdyx采纳,获得10
7分钟前
草木发布了新的文献求助10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
JamesPei应助科研通管家采纳,获得10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
爆米花应助科研通管家采纳,获得10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
草木发布了新的文献求助10
7分钟前
852应助Xin采纳,获得10
7分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733402
求助须知:如何正确求助?哪些是违规求助? 3277618
关于积分的说明 10003433
捐赠科研通 2993616
什么是DOI,文献DOI怎么找? 1642785
邀请新用户注册赠送积分活动 780641
科研通“疑难数据库(出版商)”最低求助积分说明 748912