已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid–enhanced MRI

钆酸 神经组阅片室 医学 磁共振弹性成像 放射科 肝纤维化 超声波 磁共振成像 纤维化 钆DTPA 弹性成像 内科学 神经学 精神科
作者
Stefanie J. Hectors,Paul Kennedy,Kuang-Han Huang,Daniel Stocker,Guillermo Carbonell,Hayit Greenspan,Scott L. Friedman,Bachir Taouli
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (6): 3805-3814 被引量:63
标识
DOI:10.1007/s00330-020-07475-4
摘要

To (1) develop a fully automated deep learning (DL) algorithm based on gadoxetic acid–enhanced hepatobiliary phase (HBP) MRI and (2) compare the diagnostic performance of DL vs. MR elastography (MRE) for noninvasive staging of liver fibrosis. This single-center retrospective study included 355 patients (M/F 238/117, mean age 60 years; training, n = 178; validation, n = 123; test, n = 54) who underwent gadoxetic acid–enhanced abdominal MRI, including HBP and MRE, and pathological evaluation of the liver within 1 year of MRI. Cropped liver HBP images from a custom-written fully automated liver segmentation were used as input for DL. A transfer learning approach based on the ImageNet VGG16 model was used. Different DL models were built for the prediction of fibrosis stages F1-4, F2-4, F3-4, and F4. ROC analysis was performed to evaluate the performance of DL in training, validation, and test sets and of MRE liver stiffness in the test set. AUC values of DL were 0.99/0.70/0.77 (F1-4), 0.92/0.71/0.91 (F2-4), 0.91/0.78/0.90 (F3-4), and 0.98/0.83/0.85 (F4) for training/validation/test sets, respectively. The AUCs of MRE liver stiffness in the test set were 0.86 (F1-4), 0.87 (F2-4), 0.92 (F3-4), and 0.86 (F4). AUCs of MRE and DL were not significantly different for any of the fibrosis stages (p > 0.134). The fully automated DL models based on HBP gadoxetic acid MRI showed good-to-excellent diagnostic performance for staging of liver fibrosis, with similar diagnostic performance to MRE. After validation in independent sets, the DL algorithm may allow for noninvasive liver fibrosis assessment without the need for additional MRI hardware. • The developed deep learning algorithm, based on routine standard-of-care gadoxetic acid–enhanced MRI data, showed good-to-excellent diagnostic performance for noninvasive staging of liver fibrosis. • The diagnostic performance of the deep learning algorithm was equivalent to that of MR elastography in a separate test set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
努力加油煤老八完成签到 ,获得积分10
4秒前
柔弱河马发布了新的文献求助10
4秒前
4秒前
六六完成签到 ,获得积分10
7秒前
hui_zhou应助芸栖采纳,获得10
7秒前
老詹头发布了新的文献求助10
10秒前
12秒前
神勇的半莲完成签到,获得积分10
12秒前
13秒前
14秒前
斯通纳完成签到 ,获得积分10
15秒前
hongw_liu发布了新的文献求助10
17秒前
17秒前
老詹头完成签到,获得积分10
19秒前
活泼靖柏发布了新的文献求助10
21秒前
MWY完成签到,获得积分10
22秒前
wujun完成签到,获得积分20
24秒前
26秒前
Akim应助活泼靖柏采纳,获得10
28秒前
zlx完成签到 ,获得积分10
29秒前
32秒前
33秒前
hui_zhou应助芸栖采纳,获得10
33秒前
yiryir完成签到 ,获得积分10
37秒前
小马甲应助科研通管家采纳,获得10
37秒前
MoonFlows完成签到,获得积分10
37秒前
爆米花应助科研通管家采纳,获得10
37秒前
37秒前
JamesPei应助科研通管家采纳,获得10
37秒前
也曾是她的唯一完成签到 ,获得积分10
39秒前
ma完成签到 ,获得积分10
40秒前
42秒前
43秒前
FZXDLY完成签到 ,获得积分10
44秒前
辰昜发布了新的文献求助10
45秒前
zq完成签到 ,获得积分10
46秒前
52秒前
347u完成签到 ,获得积分10
53秒前
完美世界应助犹豫晓啸采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899884
求助须知:如何正确求助?哪些是违规求助? 4180149
关于积分的说明 12976325
捐赠科研通 3944459
什么是DOI,文献DOI怎么找? 2163750
邀请新用户注册赠送积分活动 1181994
关于科研通互助平台的介绍 1087841