Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid–enhanced MRI

钆酸 神经组阅片室 医学 磁共振弹性成像 放射科 肝纤维化 超声波 磁共振成像 纤维化 钆DTPA 弹性成像 内科学 神经学 精神科
作者
Stefanie J. Hectors,Paul Kennedy,Kuang-Han Huang,Daniel Stocker,Guillermo Carbonell,Hayit Greenspan,Scott L. Friedman,Bachir Taouli
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (6): 3805-3814 被引量:44
标识
DOI:10.1007/s00330-020-07475-4
摘要

To (1) develop a fully automated deep learning (DL) algorithm based on gadoxetic acid–enhanced hepatobiliary phase (HBP) MRI and (2) compare the diagnostic performance of DL vs. MR elastography (MRE) for noninvasive staging of liver fibrosis. This single-center retrospective study included 355 patients (M/F 238/117, mean age 60 years; training, n = 178; validation, n = 123; test, n = 54) who underwent gadoxetic acid–enhanced abdominal MRI, including HBP and MRE, and pathological evaluation of the liver within 1 year of MRI. Cropped liver HBP images from a custom-written fully automated liver segmentation were used as input for DL. A transfer learning approach based on the ImageNet VGG16 model was used. Different DL models were built for the prediction of fibrosis stages F1-4, F2-4, F3-4, and F4. ROC analysis was performed to evaluate the performance of DL in training, validation, and test sets and of MRE liver stiffness in the test set. AUC values of DL were 0.99/0.70/0.77 (F1-4), 0.92/0.71/0.91 (F2-4), 0.91/0.78/0.90 (F3-4), and 0.98/0.83/0.85 (F4) for training/validation/test sets, respectively. The AUCs of MRE liver stiffness in the test set were 0.86 (F1-4), 0.87 (F2-4), 0.92 (F3-4), and 0.86 (F4). AUCs of MRE and DL were not significantly different for any of the fibrosis stages (p > 0.134). The fully automated DL models based on HBP gadoxetic acid MRI showed good-to-excellent diagnostic performance for staging of liver fibrosis, with similar diagnostic performance to MRE. After validation in independent sets, the DL algorithm may allow for noninvasive liver fibrosis assessment without the need for additional MRI hardware. • The developed deep learning algorithm, based on routine standard-of-care gadoxetic acid–enhanced MRI data, showed good-to-excellent diagnostic performance for noninvasive staging of liver fibrosis. • The diagnostic performance of the deep learning algorithm was equivalent to that of MR elastography in a separate test set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助畅快的书兰采纳,获得10
1秒前
1秒前
N型半导体发布了新的文献求助10
2秒前
烟花应助039Hc采纳,获得10
2秒前
2秒前
ps2666完成签到 ,获得积分10
2秒前
灼灼朗朗完成签到,获得积分10
3秒前
在水一方应助小陈采纳,获得10
3秒前
CipherSage应助WENDY采纳,获得10
3秒前
4秒前
默默完成签到 ,获得积分10
4秒前
xmyang完成签到,获得积分10
4秒前
goblue完成签到,获得积分10
4秒前
4秒前
矮小的笑槐完成签到,获得积分10
4秒前
竹音完成签到,获得积分10
4秒前
aodilee完成签到,获得积分10
5秒前
zho发布了新的文献求助10
5秒前
5秒前
5秒前
打打应助N型半导体采纳,获得10
5秒前
科研小白发布了新的文献求助10
5秒前
czz完成签到,获得积分10
6秒前
望开心顺利毕业完成签到,获得积分10
6秒前
ruogu7完成签到,获得积分10
7秒前
爱学习的GGbond完成签到,获得积分10
7秒前
Survivor应助to高坚果采纳,获得10
7秒前
椿iii发布了新的文献求助10
7秒前
樊尔风完成签到,获得积分10
7秒前
赘婿应助丽优采纳,获得10
7秒前
薄荷心完成签到 ,获得积分10
7秒前
yonglong完成签到,获得积分10
8秒前
CyrusSo524发布了新的文献求助200
8秒前
哇哈哈发布了新的文献求助10
9秒前
whitezhu完成签到,获得积分10
9秒前
JFP发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
冷酷严青发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582