Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid–enhanced MRI

钆酸 神经组阅片室 医学 磁共振弹性成像 放射科 肝纤维化 超声波 磁共振成像 纤维化 钆DTPA 弹性成像 内科学 神经学 精神科
作者
Stefanie J. Hectors,Paul Kennedy,Kuang-Han Huang,Daniel Stocker,Guillermo Carbonell,Hayit Greenspan,Scott L. Friedman,Bachir Taouli
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (6): 3805-3814 被引量:63
标识
DOI:10.1007/s00330-020-07475-4
摘要

To (1) develop a fully automated deep learning (DL) algorithm based on gadoxetic acid–enhanced hepatobiliary phase (HBP) MRI and (2) compare the diagnostic performance of DL vs. MR elastography (MRE) for noninvasive staging of liver fibrosis. This single-center retrospective study included 355 patients (M/F 238/117, mean age 60 years; training, n = 178; validation, n = 123; test, n = 54) who underwent gadoxetic acid–enhanced abdominal MRI, including HBP and MRE, and pathological evaluation of the liver within 1 year of MRI. Cropped liver HBP images from a custom-written fully automated liver segmentation were used as input for DL. A transfer learning approach based on the ImageNet VGG16 model was used. Different DL models were built for the prediction of fibrosis stages F1-4, F2-4, F3-4, and F4. ROC analysis was performed to evaluate the performance of DL in training, validation, and test sets and of MRE liver stiffness in the test set. AUC values of DL were 0.99/0.70/0.77 (F1-4), 0.92/0.71/0.91 (F2-4), 0.91/0.78/0.90 (F3-4), and 0.98/0.83/0.85 (F4) for training/validation/test sets, respectively. The AUCs of MRE liver stiffness in the test set were 0.86 (F1-4), 0.87 (F2-4), 0.92 (F3-4), and 0.86 (F4). AUCs of MRE and DL were not significantly different for any of the fibrosis stages (p > 0.134). The fully automated DL models based on HBP gadoxetic acid MRI showed good-to-excellent diagnostic performance for staging of liver fibrosis, with similar diagnostic performance to MRE. After validation in independent sets, the DL algorithm may allow for noninvasive liver fibrosis assessment without the need for additional MRI hardware. • The developed deep learning algorithm, based on routine standard-of-care gadoxetic acid–enhanced MRI data, showed good-to-excellent diagnostic performance for noninvasive staging of liver fibrosis. • The diagnostic performance of the deep learning algorithm was equivalent to that of MR elastography in a separate test set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不吃香菜完成签到,获得积分10
3秒前
5秒前
cwanglh完成签到 ,获得积分10
5秒前
shouz完成签到,获得积分10
7秒前
欢喜的元枫完成签到 ,获得积分10
9秒前
一一一应助sandy采纳,获得10
10秒前
顾矜应助书颜采纳,获得10
11秒前
爆米花应助猪猪hero采纳,获得20
13秒前
bear完成签到,获得积分10
15秒前
仁爱的伯云完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
20秒前
111完成签到 ,获得积分10
21秒前
朴素的啤酒完成签到,获得积分10
22秒前
spc68应助一马奔腾采纳,获得10
24秒前
甘宜发布了新的文献求助10
25秒前
书颜发布了新的文献求助10
25秒前
yt完成签到,获得积分10
26秒前
尤尤完成签到,获得积分10
27秒前
Xu完成签到,获得积分10
29秒前
橙子完成签到 ,获得积分10
32秒前
czz014完成签到,获得积分10
32秒前
wp4455777完成签到,获得积分10
32秒前
lbx完成签到,获得积分10
33秒前
缓慢逍遥完成签到 ,获得积分10
37秒前
xiazhq完成签到,获得积分10
37秒前
benj完成签到 ,获得积分10
38秒前
38秒前
mengwensi完成签到,获得积分10
39秒前
41秒前
聂亦完成签到,获得积分10
45秒前
45秒前
栀蓝完成签到 ,获得积分10
48秒前
木子完成签到 ,获得积分10
50秒前
拾壹发布了新的文献求助10
51秒前
你我的共同完成签到 ,获得积分10
52秒前
DezhaoWang完成签到,获得积分10
54秒前
沂昀完成签到 ,获得积分10
55秒前
Haonan完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539257
求助须知:如何正确求助?哪些是违规求助? 4625999
关于积分的说明 14597371
捐赠科研通 4566854
什么是DOI,文献DOI怎么找? 2503668
邀请新用户注册赠送积分活动 1481567
关于科研通互助平台的介绍 1453146