Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid–enhanced MRI

钆酸 神经组阅片室 医学 磁共振弹性成像 放射科 肝纤维化 超声波 磁共振成像 纤维化 钆DTPA 弹性成像 内科学 神经学 精神科
作者
Stefanie J. Hectors,Paul Kennedy,Kuang-Han Huang,Daniel Stocker,Guillermo Carbonell,Hayit Greenspan,Scott L. Friedman,Bachir Taouli
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (6): 3805-3814 被引量:63
标识
DOI:10.1007/s00330-020-07475-4
摘要

To (1) develop a fully automated deep learning (DL) algorithm based on gadoxetic acid–enhanced hepatobiliary phase (HBP) MRI and (2) compare the diagnostic performance of DL vs. MR elastography (MRE) for noninvasive staging of liver fibrosis. This single-center retrospective study included 355 patients (M/F 238/117, mean age 60 years; training, n = 178; validation, n = 123; test, n = 54) who underwent gadoxetic acid–enhanced abdominal MRI, including HBP and MRE, and pathological evaluation of the liver within 1 year of MRI. Cropped liver HBP images from a custom-written fully automated liver segmentation were used as input for DL. A transfer learning approach based on the ImageNet VGG16 model was used. Different DL models were built for the prediction of fibrosis stages F1-4, F2-4, F3-4, and F4. ROC analysis was performed to evaluate the performance of DL in training, validation, and test sets and of MRE liver stiffness in the test set. AUC values of DL were 0.99/0.70/0.77 (F1-4), 0.92/0.71/0.91 (F2-4), 0.91/0.78/0.90 (F3-4), and 0.98/0.83/0.85 (F4) for training/validation/test sets, respectively. The AUCs of MRE liver stiffness in the test set were 0.86 (F1-4), 0.87 (F2-4), 0.92 (F3-4), and 0.86 (F4). AUCs of MRE and DL were not significantly different for any of the fibrosis stages (p > 0.134). The fully automated DL models based on HBP gadoxetic acid MRI showed good-to-excellent diagnostic performance for staging of liver fibrosis, with similar diagnostic performance to MRE. After validation in independent sets, the DL algorithm may allow for noninvasive liver fibrosis assessment without the need for additional MRI hardware. • The developed deep learning algorithm, based on routine standard-of-care gadoxetic acid–enhanced MRI data, showed good-to-excellent diagnostic performance for noninvasive staging of liver fibrosis. • The diagnostic performance of the deep learning algorithm was equivalent to that of MR elastography in a separate test set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好白凡完成签到,获得积分10
1秒前
个性妙芙完成签到,获得积分10
1秒前
汉堡包应助双丁宝贝采纳,获得10
2秒前
2秒前
jwx完成签到,获得积分0
2秒前
初一发布了新的文献求助10
4秒前
CipherSage应助tony采纳,获得10
4秒前
科研通AI2S应助NichZhang采纳,获得10
4秒前
4秒前
4秒前
Lll完成签到,获得积分10
4秒前
jin发布了新的文献求助10
5秒前
顺利秋灵完成签到,获得积分20
5秒前
上官若男应助楚子关采纳,获得10
5秒前
科研通AI6应助jgyyugyfy采纳,获得10
6秒前
able完成签到 ,获得积分0
6秒前
PEGA发布了新的文献求助10
6秒前
6秒前
7秒前
单纯的又菱完成签到,获得积分10
7秒前
淡然从雪发布了新的文献求助10
7秒前
可靠诗筠完成签到 ,获得积分10
7秒前
wei998完成签到,获得积分20
8秒前
精明的书白完成签到,获得积分10
9秒前
yueliang发布了新的文献求助10
9秒前
Michael完成签到 ,获得积分10
9秒前
9秒前
西风月发布了新的文献求助10
9秒前
摩洛哥野山羊完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
阿飞大师发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
黄yellow完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
Eason完成签到,获得积分10
14秒前
14秒前
CYT完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734192
求助须知:如何正确求助?哪些是违规求助? 5352723
关于积分的说明 15326264
捐赠科研通 4878992
什么是DOI,文献DOI怎么找? 2621558
邀请新用户注册赠送积分活动 1570684
关于科研通互助平台的介绍 1527613