Identifying Protein Subcellular Location with Embedding Features Learned from Networks

计算机科学 嵌入 构造(python库) 支持向量机 编码 鉴定(生物学) 人工智能 随机森林 特征(语言学) 亚细胞定位 机器学习 数据挖掘 生物 哲学 语言学 基因 细胞质 程序设计语言 植物 生物化学
作者
Hongwei Liu,Bin Hu,Chen Lei,Liwu Lin
出处
期刊:Current Proteomics [Bentham Science]
卷期号:18 (5): 646-660 被引量:28
标识
DOI:10.2174/1570164617999201124142950
摘要

Background: Identification of protein subcellular location is an important problem because the subcellular location is highly related to protein function. It is fundamental to determine the locations with biology experiments. However, these experiments are of high costs and time-consuming. The alternative way to address such a problem is to design effective computational methods. Objective: To date, several computational methods have been proposed in this regard. However, these methods mainly adopted the features derived from the proteins themselves. On the other hand, with the development of the network technique, several embedding algorithms have been proposed, which can encode nodes in the network into feature vectors. Such algorithms connected the network and traditional classification algorithms. Thus, they provided a new way to construct models for the prediction of protein subcellular location. Methods: In this study, we analyzed features produced by three network embedding algorithms (DeepWalk, Node2vec and Mashup) that were applied on one or multiple protein networks. Obtained features were learned by one machine learning algorithm (support vector machine or random forest) to construct the model. The cross-validation method was adopted to evaluate all constructed models. Results: After evaluating models with the cross-validation method, embedding features yielded by Mashup on multiple networks were quite informative for predicting protein subcellular location. The model based on these features were superior to some classic models. Conclusion: Embedding features yielded by a proper and powerful network embedding algorithm were effective for building the model for prediction of protein subcellular location, providing new pipelines to build more efficient models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乌龟gogogo完成签到 ,获得积分10
2秒前
2秒前
3秒前
藤椒辣鱼应助潇洒采纳,获得30
3秒前
可爱的函函应助西子阳采纳,获得10
4秒前
Doctor_jie发布了新的文献求助10
5秒前
蝶步韶华发布了新的文献求助10
6秒前
6秒前
6秒前
Hululu完成签到 ,获得积分10
6秒前
xxh发布了新的文献求助10
7秒前
丘比特应助李灿采纳,获得10
9秒前
9秒前
ddd发布了新的文献求助10
9秒前
Wang发布了新的文献求助10
10秒前
Luminous1123完成签到 ,获得积分10
10秒前
腰果虾仁发布了新的文献求助10
11秒前
13秒前
aistudy发布了新的文献求助10
13秒前
14秒前
陈芒果啊完成签到 ,获得积分10
15秒前
16秒前
17秒前
诺木发布了新的文献求助10
19秒前
无奈曼云完成签到,获得积分10
22秒前
燕燕完成签到 ,获得积分10
22秒前
麻雀关注了科研通微信公众号
23秒前
兽医12138完成签到 ,获得积分10
24秒前
郭郭郭完成签到,获得积分10
25秒前
26秒前
ljhong1116完成签到,获得积分10
27秒前
sjb发布了新的文献求助10
30秒前
31秒前
gecy完成签到 ,获得积分10
32秒前
zyz完成签到,获得积分10
33秒前
34秒前
腰果虾仁完成签到,获得积分10
35秒前
Owen应助耶比环肽采纳,获得10
35秒前
糖果发布了新的文献求助10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461234
求助须知:如何正确求助?哪些是违规求助? 3054927
关于积分的说明 9045666
捐赠科研通 2744832
什么是DOI,文献DOI怎么找? 1505707
科研通“疑难数据库(出版商)”最低求助积分说明 695794
邀请新用户注册赠送积分活动 695233