Identifying Protein Subcellular Location with Embedding Features Learned from Networks

计算机科学 嵌入 构造(python库) 支持向量机 编码 鉴定(生物学) 人工智能 随机森林 特征(语言学) 亚细胞定位 机器学习 数据挖掘 生物 哲学 语言学 基因 细胞质 程序设计语言 植物 生物化学
作者
Hongwei Liu,Bin Hu,Chen Lei,Liwu Lin
出处
期刊:Current Proteomics [Bentham Science Publishers]
卷期号:18 (5): 646-660 被引量:28
标识
DOI:10.2174/1570164617999201124142950
摘要

Background: Identification of protein subcellular location is an important problem because the subcellular location is highly related to protein function. It is fundamental to determine the locations with biology experiments. However, these experiments are of high costs and time-consuming. The alternative way to address such a problem is to design effective computational methods. Objective: To date, several computational methods have been proposed in this regard. However, these methods mainly adopted the features derived from the proteins themselves. On the other hand, with the development of the network technique, several embedding algorithms have been proposed, which can encode nodes in the network into feature vectors. Such algorithms connected the network and traditional classification algorithms. Thus, they provided a new way to construct models for the prediction of protein subcellular location. Methods: In this study, we analyzed features produced by three network embedding algorithms (DeepWalk, Node2vec and Mashup) that were applied on one or multiple protein networks. Obtained features were learned by one machine learning algorithm (support vector machine or random forest) to construct the model. The cross-validation method was adopted to evaluate all constructed models. Results: After evaluating models with the cross-validation method, embedding features yielded by Mashup on multiple networks were quite informative for predicting protein subcellular location. The model based on these features were superior to some classic models. Conclusion: Embedding features yielded by a proper and powerful network embedding algorithm were effective for building the model for prediction of protein subcellular location, providing new pipelines to build more efficient models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
cayde完成签到,获得积分10
2秒前
2秒前
fdscat发布了新的文献求助10
3秒前
4秒前
4秒前
YH应助FANGQUAN采纳,获得50
6秒前
书虫完成签到,获得积分10
6秒前
庾稀完成签到,获得积分20
6秒前
Shirley发布了新的文献求助30
7秒前
魁梧的雅寒完成签到 ,获得积分10
7秒前
迷路中的骑手完成签到,获得积分10
8秒前
李健应助kmo采纳,获得10
8秒前
庾稀发布了新的文献求助10
9秒前
小慢完成签到,获得积分10
11秒前
第三人称的自己完成签到,获得积分10
13秒前
14秒前
zero1122完成签到 ,获得积分10
14秒前
俭朴夜雪发布了新的文献求助10
14秒前
yznfly应助科研通管家采纳,获得30
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
yznfly应助科研通管家采纳,获得30
16秒前
yznfly应助科研通管家采纳,获得30
16秒前
香蕉觅云应助糖炒栗子采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
17秒前
Ava应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
英俊的铭应助杏仁采纳,获得10
17秒前
mysgmmdnz发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019