已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying Protein Subcellular Location with Embedding Features Learned from Networks

计算机科学 嵌入 构造(python库) 支持向量机 编码 鉴定(生物学) 人工智能 随机森林 特征(语言学) 亚细胞定位 机器学习 数据挖掘 生物 哲学 语言学 基因 细胞质 程序设计语言 植物 生物化学
作者
Hongwei Liu,Bin Hu,Chen Lei,Liwu Lin
出处
期刊:Current Proteomics [Bentham Science]
卷期号:18 (5): 646-660 被引量:28
标识
DOI:10.2174/1570164617999201124142950
摘要

Background: Identification of protein subcellular location is an important problem because the subcellular location is highly related to protein function. It is fundamental to determine the locations with biology experiments. However, these experiments are of high costs and time-consuming. The alternative way to address such a problem is to design effective computational methods. Objective: To date, several computational methods have been proposed in this regard. However, these methods mainly adopted the features derived from the proteins themselves. On the other hand, with the development of the network technique, several embedding algorithms have been proposed, which can encode nodes in the network into feature vectors. Such algorithms connected the network and traditional classification algorithms. Thus, they provided a new way to construct models for the prediction of protein subcellular location. Methods: In this study, we analyzed features produced by three network embedding algorithms (DeepWalk, Node2vec and Mashup) that were applied on one or multiple protein networks. Obtained features were learned by one machine learning algorithm (support vector machine or random forest) to construct the model. The cross-validation method was adopted to evaluate all constructed models. Results: After evaluating models with the cross-validation method, embedding features yielded by Mashup on multiple networks were quite informative for predicting protein subcellular location. The model based on these features were superior to some classic models. Conclusion: Embedding features yielded by a proper and powerful network embedding algorithm were effective for building the model for prediction of protein subcellular location, providing new pipelines to build more efficient models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助EadonChen采纳,获得10
1秒前
smart完成签到,获得积分10
2秒前
打打应助h2o采纳,获得10
3秒前
科研通AI6.1应助虚心飞鸟采纳,获得10
3秒前
李健的小迷弟应助向阳采纳,获得10
4秒前
褚幻香发布了新的文献求助10
7秒前
范范完成签到,获得积分20
8秒前
11秒前
Yusra完成签到 ,获得积分10
12秒前
不懈奋进应助LO7pM2采纳,获得30
13秒前
14秒前
蛋挞完成签到 ,获得积分10
14秒前
向阳完成签到,获得积分10
14秒前
455完成签到,获得积分10
15秒前
向阳发布了新的文献求助10
18秒前
Akim应助柚子采纳,获得10
19秒前
大模型应助PAPA采纳,获得10
20秒前
21秒前
Hello应助科研通管家采纳,获得10
22秒前
Hilda007应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
YifanWang应助科研通管家采纳,获得10
22秒前
Hilda007应助科研通管家采纳,获得10
22秒前
CCCheny应助科研通管家采纳,获得10
22秒前
YifanWang应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
23秒前
CCCheny应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
23秒前
隐形曼青应助科研通管家采纳,获得100
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得100
23秒前
Hello应助科研通管家采纳,获得10
23秒前
无极微光应助科研通管家采纳,获得20
23秒前
无极微光应助科研通管家采纳,获得20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938