Identifying Protein Subcellular Location with Embedding Features Learned from Networks

计算机科学 嵌入 构造(python库) 支持向量机 编码 鉴定(生物学) 人工智能 随机森林 特征(语言学) 亚细胞定位 机器学习 数据挖掘 生物 哲学 语言学 基因 细胞质 程序设计语言 植物 生物化学
作者
Hongwei Liu,Bin Hu,Chen Lei,Liwu Lin
出处
期刊:Current Proteomics [Bentham Science]
卷期号:18 (5): 646-660 被引量:28
标识
DOI:10.2174/1570164617999201124142950
摘要

Background: Identification of protein subcellular location is an important problem because the subcellular location is highly related to protein function. It is fundamental to determine the locations with biology experiments. However, these experiments are of high costs and time-consuming. The alternative way to address such a problem is to design effective computational methods. Objective: To date, several computational methods have been proposed in this regard. However, these methods mainly adopted the features derived from the proteins themselves. On the other hand, with the development of the network technique, several embedding algorithms have been proposed, which can encode nodes in the network into feature vectors. Such algorithms connected the network and traditional classification algorithms. Thus, they provided a new way to construct models for the prediction of protein subcellular location. Methods: In this study, we analyzed features produced by three network embedding algorithms (DeepWalk, Node2vec and Mashup) that were applied on one or multiple protein networks. Obtained features were learned by one machine learning algorithm (support vector machine or random forest) to construct the model. The cross-validation method was adopted to evaluate all constructed models. Results: After evaluating models with the cross-validation method, embedding features yielded by Mashup on multiple networks were quite informative for predicting protein subcellular location. The model based on these features were superior to some classic models. Conclusion: Embedding features yielded by a proper and powerful network embedding algorithm were effective for building the model for prediction of protein subcellular location, providing new pipelines to build more efficient models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春树暮云发布了新的文献求助10
刚刚
刚刚
小黑猴ps完成签到,获得积分10
刚刚
刚刚
1秒前
平常墨镜发布了新的文献求助10
1秒前
1秒前
李爱国应助乃思采纳,获得10
2秒前
天天快乐应助中和皇极采纳,获得10
2秒前
Jm发布了新的文献求助10
2秒前
3秒前
3秒前
win发布了新的文献求助10
4秒前
德行天下发布了新的文献求助30
4秒前
4秒前
发财达人发布了新的文献求助10
4秒前
幸福的含雁应助猫猫啸日采纳,获得20
5秒前
风中觅海发布了新的文献求助10
5秒前
5秒前
HY发布了新的文献求助10
5秒前
安静的幻竹应助wk采纳,获得10
5秒前
5秒前
5秒前
Stella应助春树暮云采纳,获得10
6秒前
FashionBoy应助汤飞柏采纳,获得10
6秒前
popvich完成签到,获得积分0
6秒前
6秒前
汤姆利伯发布了新的文献求助10
6秒前
嘿嘿发布了新的文献求助10
7秒前
7秒前
7秒前
善学以致用应助林途采纳,获得10
7秒前
FashionBoy应助蓝水半杯采纳,获得10
7秒前
Toy发布了新的文献求助10
8秒前
fengyu发布了新的文献求助10
8秒前
8秒前
优美一曲发布了新的文献求助10
9秒前
Orange应助www采纳,获得10
9秒前
传奇3应助张兰兰采纳,获得10
9秒前
梨儿萌死发布了新的文献求助10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262