Machine learning the band gap properties of kesterite I2−II−IV−V4 quaternary compounds for photovoltaics applications

材料科学 结晶学 人工智能 计算机科学 化学
作者
Leigh Weston,Catherine Stampfl
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:2 (8) 被引量:41
标识
DOI:10.1103/physrevmaterials.2.085407
摘要

Kesterite I$_2$-II-IV-V$_4$ semiconductors are promising solar absorbers for photovoltaics applications. The band gap and it's character, either direct or indirect, are fundamental properties determining photovoltaic-device efficiency. We use a combination of accurate first-principles calculations and machine learning to predict the properties of the band gap for a large number of kesterite I$_2$-II-IV-V$_4$ semiconductors. In determining the magnitude of the fundamental gap, we compare results for a number of machine-learning models, and achieve a root mean squared error as low as 283 meV; the best results are achieved using support-vector regression with a radial-bias kernel. This error is well within the uncertainty of even the most advanced first-principles methods for calculating semiconductor band gaps. Predicting the direct--indirect property of the band gap is more challenging. After significant feature engineering, we are able to train a classifier that predicts the nature of the band gap with an accuracy of 89 \% using logistic regression. Using these trained models, the band gap properties of 1568 kesterite I$_2$-II-IV-V$_4$ compounds are predicted. We find 717 compounds with band gaps in the range 0.5 -- 2.5 eV that can potentially act as solar absorbers, and 242 materials with a band gap in the ``\emph{optimum range}" of 1.2 -- 1.8 eV. The stability of these 242 compounds is assessed by calculating the Energy Above Hull using the Materials Project database, and the band gaps are verified using hybrid functional calculations; in the end, we identify 25 compounds that are expected to be synthesizable, and have a band gap in the range 1.2 -- 1.8 eV -- most of which are previously unexplored. These results will be useful in the materials engineering of efficient photovoltaic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
_蝴蝶小姐发布了新的文献求助10
2秒前
3秒前
郭小宝发布了新的文献求助10
3秒前
3秒前
hua应助小坤同学采纳,获得10
3秒前
Gpu_broken应助故意的怜晴采纳,获得10
3秒前
美好乌冬面完成签到,获得积分10
4秒前
乐乐应助张瑜采纳,获得10
5秒前
在水一方应助张土豆采纳,获得10
5秒前
小蘑菇应助小丑鱼儿采纳,获得10
5秒前
jiapei_1019发布了新的文献求助10
6秒前
科研辣椒完成签到,获得积分10
7秒前
猪猪hero发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
xiaolaohu完成签到,获得积分10
8秒前
呆萌的书桃关注了科研通微信公众号
9秒前
出租耳朵发布了新的文献求助10
9秒前
9秒前
健康的电灯胆完成签到,获得积分0
9秒前
11秒前
12秒前
12秒前
孙福禄应助停婷采纳,获得10
12秒前
善学以致用应助chenlc采纳,获得10
13秒前
袁咏琳冲冲冲完成签到,获得积分20
13秒前
14秒前
深情安青应助小坤同学采纳,获得10
15秒前
xiaowulai完成签到,获得积分20
16秒前
猪猪hero发布了新的文献求助10
16秒前
LaTeXer应助fd163c采纳,获得50
16秒前
16秒前
kk发布了新的文献求助30
17秒前
17秒前
fu完成签到 ,获得积分10
18秒前
18秒前
18秒前
zhuyt发布了新的文献求助10
19秒前
19秒前
啦啦啦完成签到 ,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021