Machine learning the band gap properties of kesterite I2−II−IV−V4 quaternary compounds for photovoltaics applications

材料科学 结晶学 人工智能 计算机科学 化学
作者
Leigh Weston,Catherine Stampfl
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:2 (8) 被引量:47
标识
DOI:10.1103/physrevmaterials.2.085407
摘要

Kesterite I$_2$-II-IV-V$_4$ semiconductors are promising solar absorbers for photovoltaics applications. The band gap and it's character, either direct or indirect, are fundamental properties determining photovoltaic-device efficiency. We use a combination of accurate first-principles calculations and machine learning to predict the properties of the band gap for a large number of kesterite I$_2$-II-IV-V$_4$ semiconductors. In determining the magnitude of the fundamental gap, we compare results for a number of machine-learning models, and achieve a root mean squared error as low as 283 meV; the best results are achieved using support-vector regression with a radial-bias kernel. This error is well within the uncertainty of even the most advanced first-principles methods for calculating semiconductor band gaps. Predicting the direct--indirect property of the band gap is more challenging. After significant feature engineering, we are able to train a classifier that predicts the nature of the band gap with an accuracy of 89 \% using logistic regression. Using these trained models, the band gap properties of 1568 kesterite I$_2$-II-IV-V$_4$ compounds are predicted. We find 717 compounds with band gaps in the range 0.5 -- 2.5 eV that can potentially act as solar absorbers, and 242 materials with a band gap in the ``\emph{optimum range}" of 1.2 -- 1.8 eV. The stability of these 242 compounds is assessed by calculating the Energy Above Hull using the Materials Project database, and the band gaps are verified using hybrid functional calculations; in the end, we identify 25 compounds that are expected to be synthesizable, and have a band gap in the range 1.2 -- 1.8 eV -- most of which are previously unexplored. These results will be useful in the materials engineering of efficient photovoltaic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助优美的雁丝采纳,获得10
1秒前
hhh发布了新的文献求助10
1秒前
2秒前
2秒前
700w完成签到 ,获得积分0
2秒前
小磊子完成签到,获得积分10
3秒前
荆月竹完成签到,获得积分10
4秒前
ljloveljj关注了科研通微信公众号
5秒前
钢笔发布了新的文献求助10
5秒前
sevenseven完成签到,获得积分10
5秒前
Orange应助小刘采纳,获得10
5秒前
传奇3应助luckyhan采纳,获得10
6秒前
笑点低的语蕊完成签到,获得积分20
6秒前
N1发布了新的文献求助10
7秒前
7秒前
Anima应助物理陈老师采纳,获得10
8秒前
科目三应助平淡映易采纳,获得10
8秒前
完美世界应助果粒程采纳,获得10
8秒前
9秒前
霸气的香菇完成签到 ,获得积分10
10秒前
紫色奶萨完成签到,获得积分10
11秒前
11秒前
tree发布了新的文献求助10
12秒前
所所应助任性映秋采纳,获得10
12秒前
woodwood完成签到,获得积分10
12秒前
游标卡尺完成签到,获得积分10
13秒前
欣喜的秋莲完成签到,获得积分10
14秒前
斯文败类应助111舒舒采纳,获得10
14秒前
平淡映易完成签到,获得积分10
15秒前
YYJJHH完成签到,获得积分10
15秒前
DR完成签到,获得积分10
16秒前
游标卡尺发布了新的文献求助10
17秒前
17秒前
胡0515_完成签到,获得积分20
17秒前
17秒前
18秒前
xxfsx应助西行龟采纳,获得20
18秒前
zhizhzihzih发布了新的文献求助10
18秒前
19秒前
朝圣者发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289641
求助须知:如何正确求助?哪些是违规求助? 4441165
关于积分的说明 13826825
捐赠科研通 4323621
什么是DOI,文献DOI怎么找? 2373243
邀请新用户注册赠送积分活动 1368665
关于科研通互助平台的介绍 1332557