Machine learning the band gap properties of kesterite I2−II−IV−V4 quaternary compounds for photovoltaics applications

材料科学 结晶学 人工智能 计算机科学 化学
作者
Leigh Weston,Catherine Stampfl
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:2 (8) 被引量:41
标识
DOI:10.1103/physrevmaterials.2.085407
摘要

Kesterite I$_2$-II-IV-V$_4$ semiconductors are promising solar absorbers for photovoltaics applications. The band gap and it's character, either direct or indirect, are fundamental properties determining photovoltaic-device efficiency. We use a combination of accurate first-principles calculations and machine learning to predict the properties of the band gap for a large number of kesterite I$_2$-II-IV-V$_4$ semiconductors. In determining the magnitude of the fundamental gap, we compare results for a number of machine-learning models, and achieve a root mean squared error as low as 283 meV; the best results are achieved using support-vector regression with a radial-bias kernel. This error is well within the uncertainty of even the most advanced first-principles methods for calculating semiconductor band gaps. Predicting the direct--indirect property of the band gap is more challenging. After significant feature engineering, we are able to train a classifier that predicts the nature of the band gap with an accuracy of 89 \% using logistic regression. Using these trained models, the band gap properties of 1568 kesterite I$_2$-II-IV-V$_4$ compounds are predicted. We find 717 compounds with band gaps in the range 0.5 -- 2.5 eV that can potentially act as solar absorbers, and 242 materials with a band gap in the ``\emph{optimum range}" of 1.2 -- 1.8 eV. The stability of these 242 compounds is assessed by calculating the Energy Above Hull using the Materials Project database, and the band gaps are verified using hybrid functional calculations; in the end, we identify 25 compounds that are expected to be synthesizable, and have a band gap in the range 1.2 -- 1.8 eV -- most of which are previously unexplored. These results will be useful in the materials engineering of efficient photovoltaic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸楷瑞发布了新的文献求助10
1秒前
沥青完成签到,获得积分10
2秒前
1111发布了新的文献求助200
2秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得10
5秒前
curtisness应助科研通管家采纳,获得10
5秒前
wink0606应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
认真乐双完成签到,获得积分10
8秒前
9秒前
有你完成签到,获得积分10
10秒前
酷波er应助yinyin采纳,获得10
12秒前
蕾蕾子完成签到,获得积分20
13秒前
14秒前
14秒前
糊涂的雁易应助慕文颜雨采纳,获得10
14秒前
15秒前
今后应助yjwang采纳,获得10
16秒前
Alan发布了新的文献求助10
18秒前
学术蝗虫发布了新的文献求助10
20秒前
桐桐应助要减肥朋友采纳,获得10
21秒前
郑微岚完成签到,获得积分10
22秒前
23秒前
青蛙的第二滴口水完成签到,获得积分20
23秒前
23秒前
酷波er应助yi采纳,获得20
24秒前
24秒前
25秒前
美满的鲂发布了新的文献求助20
25秒前
Polaris完成签到,获得积分10
25秒前
27秒前
28秒前
29秒前
Polaris发布了新的文献求助10
30秒前
31秒前
32秒前
淡定的傲玉完成签到 ,获得积分10
33秒前
Zeal发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123018
求助须知:如何正确求助?哪些是违规求助? 2773507
关于积分的说明 7718023
捐赠科研通 2429087
什么是DOI,文献DOI怎么找? 1290140
科研通“疑难数据库(出版商)”最低求助积分说明 621713
版权声明 600220