Determining Optimal Conflict Avoidance Manoeuvres At High Densities With Reinforcement Learning

强化学习 计算机科学 无人机 职位(财务) 冲突解决 代表(政治) 人工智能 弹道 控制理论(社会学) 数学优化 数学 控制(管理) 经济 生物 法学 物理 政治 天文 遗传学 政治学 财务
作者
Marta Ribeiro,Joost Ellerbroek,Jacco Hoekstra
摘要

The use of drones for applications such as package delivery, in an urban setting, would result in traffic densities that are orders of magnitude higher than any observed in manned aviation. Current geometric resolution models have proven to be very efficient at relatively moderate densities. However, at higher densities, performance is hindered by the unpredictable emergent behaviour from neighbouring aircraft. In this paper, we use a hybrid solution between existing geometric resolution approaches and reinforcement learning (RL), directed at improving conflict resolution performance at high densities. We resort to a Deep Deterministic Policy Gradient (DDPG) model to improve the behaviour of the Modified Voltage Potential (MVP) geometric conflict resolution method. By default, the MVP method generates avoidance manoeuvres of a geometrically-defined type, using a fixed look-ahead time. In the current study, we instead aim to use RL to determine the values for these variables, based on intruder position and traffic density. The analysis in this paper specifically addresses the difficulty of training algorithms in a cooperative multi-agent case to converge to optimal values. We prove that finding the right representation of state/rewards in a nonstationary environment is non-trivial and highly influences the learning process. Finally, we show that a variation of resolution manoeuvres can improve the safety of several scenarios at high traffic densities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助妮儿采纳,获得10
1秒前
阿司匹林发布了新的文献求助10
1秒前
小周发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI2S应助酷炫傲安采纳,获得10
3秒前
3秒前
3秒前
小可爱啵完成签到,获得积分10
4秒前
qq158014169发布了新的文献求助10
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
浩浩发布了新的文献求助10
8秒前
9秒前
FashionBoy应助93577采纳,获得10
9秒前
9秒前
乐乐应助阿司匹林采纳,获得10
9秒前
10秒前
23发布了新的文献求助10
11秒前
科研通AI6应助Ralphter采纳,获得30
11秒前
妮儿发布了新的文献求助10
12秒前
yang发布了新的文献求助10
12秒前
科目三应助叶叶叶采纳,获得10
12秒前
JamesPei应助吴漾采纳,获得10
14秒前
16秒前
16秒前
zhang完成签到,获得积分10
16秒前
16秒前
17秒前
小马甲应助111采纳,获得30
17秒前
17秒前
17秒前
19秒前
20秒前
20秒前
21秒前
十一完成签到,获得积分20
21秒前
vince完成签到 ,获得积分10
21秒前
fei菲飞发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776730
关于积分的说明 15045622
捐赠科研通 4807687
什么是DOI,文献DOI怎么找? 2571022
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486609