Machine learning-based fall detection system for the elderly using passive RFID sensor tags

坠落(事故) 老年人 计算机科学 特征(语言学) 老年护理 人工智能 集合(抽象数据类型) 独立生活 机器学习 计算机安全 实时计算 医学 老年学 护理部 环境卫生 哲学 程序设计语言 语言学
作者
Köichi Toda,Norihiko Shinomiya
标识
DOI:10.1109/icst46873.2019.9047732
摘要

The percentage of elderly people in the world population has been rapidly increasing. Accordingly, the demand for special nursing homes and professional caregivers has also been growing to support the elderly's daily activities. Since elderly people are often unable to get up without assistance after falling, the failure to detect falling accidents can further lead to serious injuries. Hence, early fall detection is crucial to reduce the risk of the elderly's hospitalization and death caused by accidents. In order to promote early fall detection, monitoring services for elderly people based on IoT have been developed. In this paper, the proposed system uses passive RFID sensor tag is composed RFMicron's Magnus S chip, which can measure not only RSSI but also pressure. In our approach, those tags are attached to the indoor footwear and obtain a change of RSSI and pressure values during activity. Our experiment is conducted by extracting features from raw data and classifying activities with machine learning. This paper shows two training models with a different feature set developed in order to evaluate the effectiveness of passive sensor tags. Moreover, the results demonstrate the accuracy of person-dependent and person-independent with the dataset from different subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liquor完成签到,获得积分10
2秒前
nikai完成签到,获得积分10
5秒前
wwz应助wxp采纳,获得10
6秒前
6秒前
6秒前
7秒前
善学以致用应助明理苑博采纳,获得10
7秒前
李七七完成签到,获得积分10
8秒前
慕青应助Carpe采纳,获得10
8秒前
8秒前
Enothan完成签到 ,获得积分10
9秒前
shain发布了新的文献求助10
9秒前
qqq发布了新的文献求助10
10秒前
11秒前
123456发布了新的文献求助10
12秒前
科目三应助舒适的平蓝采纳,获得10
13秒前
13秒前
积极妙竹发布了新的文献求助10
13秒前
上官若男应助yzm788695采纳,获得10
13秒前
14秒前
科研通AI2S应助lilycat采纳,获得80
14秒前
莫离发布了新的文献求助10
16秒前
yangmin发布了新的文献求助10
17秒前
18秒前
qqq完成签到,获得积分10
22秒前
Lucas应助山楂采纳,获得20
22秒前
23秒前
莫离完成签到,获得积分10
24秒前
张文博完成签到,获得积分10
25秒前
26秒前
傅全有发布了新的文献求助10
26秒前
清爽的梦松完成签到,获得积分10
28秒前
含糊的皮卡丘完成签到,获得积分10
28秒前
xxy发布了新的文献求助10
29秒前
30秒前
深情安青应助傅全有采纳,获得10
31秒前
Ava应助yingyc采纳,获得10
31秒前
32秒前
32秒前
勤劳的乐安完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112