脑-机接口
运动表象
脑电图
感觉运动节律
计算机科学
心理意象
心理学
人工智能
认知心理学
认知
神经科学
标识
DOI:10.1142/s0129065720500264
摘要
Brain–computer interfaces (BCIs) can provide a means of communication to individuals with severe motor disorders, such as those presenting as locked-in. Many BCI paradigms rely on motor neural pathways, which are often impaired in these individuals. However, recent findings suggest that visuospatial function may remain intact. This study aimed to determine whether visuospatial imagery, a previously unexplored task, could be used to signify intent in an online electroencephalography (EEG)-based BCI. Eighteen typically developed participants imagined checkerboard arrow stimuli in four quadrants of the visual field in 5-s trials, while signals were collected using 16 dry electrodes over the visual cortex. In online blocks, participants received graded visual feedback based on their performance. An initial BCI pipeline (visuospatial imagery classifier I) attained a mean accuracy of [Formula: see text]% classifying rest against visuospatial imagery in online trials. This BCI pipeline was further improved using restriction to alpha band features (visuospatial imagery classifier II), resulting in a mean pseudo-online accuracy of [Formula: see text]%. Accuracies exceeded the threshold for practical BCIs in 12 participants. This study supports the use of visuospatial imagery as a real-time, binary EEG-BCI control paradigm.
科研通智能强力驱动
Strongly Powered by AbleSci AI