亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Creation and Testing of a Deep Learning Algorithm to Automatically Identify and Label Vessels, Nerves, Tendons, and Bones on Cross‐sectional Point‐of‐Care Ultrasound Scans for Peripheral Intravenous Catheter Placement by Novices

医学 算法 超声波 最小边界框 点(几何) 人工智能 放射科 计算机科学 图像(数学) 数学 几何学
作者
Michael Blaivas,Robert Arntfield,Matthew White
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:39 (9): 1721-1727 被引量:7
标识
DOI:10.1002/jum.15270
摘要

Objectives We sought to create a deep learning (DL) algorithm to identify vessels, bones, nerves, and tendons on transverse upper extremity (UE) ultrasound (US) images to enable providers new to US‐guided peripheral vascular access to identify anatomy. Methods We used publicly available DL architecture (YOLOv3) and deidentified transverse US videos of the UE for algorithm development. Vessels, bones, tendons, and nerves were labeled with bounding boxes. A total of 203,966 images were generated from videos, with corresponding label box coordinates in a YOLOv3 format. Training accuracy, losses, and learning curves were tracked. As a final real‐world test, 50 randomly selected images from unrelated UE US videos were used to test the DL algorithm. Four different versions of the YOLOv3 algorithm were tested with varied amounts of training and sensitivity settings. The same 50 images were labeled by 2 blinded point‐of‐care ultrasound (POCUS) experts. The area under the curve (AUC) was calculated for the DL algorithm and POCUS expert performance. Results The algorithm outperformed POCUS experts in detection of all structures in the UE, with an AUC of 0.78 versus 0.69 and 0.71, respectively. When considering vessels, only one of the POCUS experts attained an AUC of 0.85, just ahead of the DL algorithm, with an AUC of 0.83. Conclusions Our DL algorithm proved accurate at identifying 4 common structures on cross‐sectional US imaging of the UE, which would allow novice POCUS providers to more confidently and accurately target vessels for cannulation, avoiding other structures. Overall, the algorithm outperformed 2 blinded POCUS experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
21秒前
余灿发布了新的文献求助10
29秒前
48秒前
余灿完成签到,获得积分20
51秒前
53秒前
pharmac完成签到,获得积分10
1分钟前
1分钟前
小唐尼完成签到,获得积分10
1分钟前
1分钟前
YifanWang应助Wei采纳,获得10
1分钟前
朴实迎梅完成签到,获得积分10
2分钟前
2分钟前
科研通AI5应助mmmmmyq采纳,获得10
3分钟前
搜集达人应助Wei采纳,获得10
3分钟前
lanxinge完成签到 ,获得积分10
3分钟前
3分钟前
mmmmmyq发布了新的文献求助10
3分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
心灵美语兰完成签到 ,获得积分10
4分钟前
4分钟前
大方的从寒完成签到,获得积分10
4分钟前
5分钟前
kuoping完成签到,获得积分0
5分钟前
5分钟前
5分钟前
考博上岸26完成签到 ,获得积分10
5分钟前
乘乘完成签到 ,获得积分10
6分钟前
6分钟前
貔貅完成签到 ,获得积分10
6分钟前
安然完成签到 ,获得积分10
7分钟前
爱静静完成签到,获得积分0
7分钟前
woxinyouyou完成签到,获得积分0
7分钟前
成就的热狗完成签到,获得积分20
8分钟前
科研通AI6应助科研通管家采纳,获得30
8分钟前
8分钟前
充电宝应助Jenny采纳,获得10
8分钟前
领导范儿应助Gryphon采纳,获得10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254807
求助须知:如何正确求助?哪些是违规求助? 4417641
关于积分的说明 13751524
捐赠科研通 4290452
什么是DOI,文献DOI怎么找? 2354193
邀请新用户注册赠送积分活动 1350813
关于科研通互助平台的介绍 1311126