Creation and Testing of a Deep Learning Algorithm to Automatically Identify and Label Vessels, Nerves, Tendons, and Bones on Cross‐sectional Point‐of‐Care Ultrasound Scans for Peripheral Intravenous Catheter Placement by Novices

医学 算法 超声波 最小边界框 点(几何) 人工智能 放射科 计算机科学 图像(数学) 数学 几何学
作者
Michael Blaivas,Robert Arntfield,Matthew White
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:39 (9): 1721-1727 被引量:7
标识
DOI:10.1002/jum.15270
摘要

Objectives We sought to create a deep learning (DL) algorithm to identify vessels, bones, nerves, and tendons on transverse upper extremity (UE) ultrasound (US) images to enable providers new to US‐guided peripheral vascular access to identify anatomy. Methods We used publicly available DL architecture (YOLOv3) and deidentified transverse US videos of the UE for algorithm development. Vessels, bones, tendons, and nerves were labeled with bounding boxes. A total of 203,966 images were generated from videos, with corresponding label box coordinates in a YOLOv3 format. Training accuracy, losses, and learning curves were tracked. As a final real‐world test, 50 randomly selected images from unrelated UE US videos were used to test the DL algorithm. Four different versions of the YOLOv3 algorithm were tested with varied amounts of training and sensitivity settings. The same 50 images were labeled by 2 blinded point‐of‐care ultrasound (POCUS) experts. The area under the curve (AUC) was calculated for the DL algorithm and POCUS expert performance. Results The algorithm outperformed POCUS experts in detection of all structures in the UE, with an AUC of 0.78 versus 0.69 and 0.71, respectively. When considering vessels, only one of the POCUS experts attained an AUC of 0.85, just ahead of the DL algorithm, with an AUC of 0.83. Conclusions Our DL algorithm proved accurate at identifying 4 common structures on cross‐sectional US imaging of the UE, which would allow novice POCUS providers to more confidently and accurately target vessels for cannulation, avoiding other structures. Overall, the algorithm outperformed 2 blinded POCUS experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助一一采纳,获得10
刚刚
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得30
刚刚
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
多乐多应助科研通管家采纳,获得10
1秒前
jjf发布了新的文献求助10
1秒前
狂野萤应助科研通管家采纳,获得10
1秒前
反恐分子应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
小许发布了新的文献求助10
3秒前
炙热晓露发布了新的文献求助10
3秒前
orixero应助韩豆乐采纳,获得10
3秒前
4秒前
烟花应助灯箱采纳,获得10
4秒前
4秒前
指尖的阿里阿德涅完成签到,获得积分10
5秒前
5秒前
申木发布了新的文献求助10
6秒前
寒冷书兰完成签到,获得积分10
7秒前
上官若男应助辛勤太阳采纳,获得10
7秒前
Jasper应助mse采纳,获得10
7秒前
杰jie发布了新的文献求助10
8秒前
yy完成签到,获得积分10
8秒前
GLORIA77发布了新的文献求助10
9秒前
jxc077发布了新的文献求助10
9秒前
9秒前
10秒前
aabot完成签到,获得积分10
11秒前
柒玉染发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602562
求助须知:如何正确求助?哪些是违规求助? 4687654
关于积分的说明 14850581
捐赠科研通 4684527
什么是DOI,文献DOI怎么找? 2539963
邀请新用户注册赠送积分活动 1506690
关于科研通互助平台的介绍 1471428