Creation and Testing of a Deep Learning Algorithm to Automatically Identify and Label Vessels, Nerves, Tendons, and Bones on Cross‐sectional Point‐of‐Care Ultrasound Scans for Peripheral Intravenous Catheter Placement by Novices

医学 算法 超声波 最小边界框 点(几何) 人工智能 放射科 计算机科学 图像(数学) 数学 几何学
作者
Michael Blaivas,Robert Arntfield,Matthew White
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:39 (9): 1721-1727 被引量:7
标识
DOI:10.1002/jum.15270
摘要

Objectives We sought to create a deep learning (DL) algorithm to identify vessels, bones, nerves, and tendons on transverse upper extremity (UE) ultrasound (US) images to enable providers new to US‐guided peripheral vascular access to identify anatomy. Methods We used publicly available DL architecture (YOLOv3) and deidentified transverse US videos of the UE for algorithm development. Vessels, bones, tendons, and nerves were labeled with bounding boxes. A total of 203,966 images were generated from videos, with corresponding label box coordinates in a YOLOv3 format. Training accuracy, losses, and learning curves were tracked. As a final real‐world test, 50 randomly selected images from unrelated UE US videos were used to test the DL algorithm. Four different versions of the YOLOv3 algorithm were tested with varied amounts of training and sensitivity settings. The same 50 images were labeled by 2 blinded point‐of‐care ultrasound (POCUS) experts. The area under the curve (AUC) was calculated for the DL algorithm and POCUS expert performance. Results The algorithm outperformed POCUS experts in detection of all structures in the UE, with an AUC of 0.78 versus 0.69 and 0.71, respectively. When considering vessels, only one of the POCUS experts attained an AUC of 0.85, just ahead of the DL algorithm, with an AUC of 0.83. Conclusions Our DL algorithm proved accurate at identifying 4 common structures on cross‐sectional US imaging of the UE, which would allow novice POCUS providers to more confidently and accurately target vessels for cannulation, avoiding other structures. Overall, the algorithm outperformed 2 blinded POCUS experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大美发布了新的文献求助10
刚刚
22发布了新的文献求助10
1秒前
慕青应助科研茶采纳,获得10
1秒前
39hpl完成签到,获得积分20
2秒前
故意的冰岚完成签到,获得积分20
3秒前
阳光项链发布了新的文献求助10
3秒前
王子语发布了新的文献求助10
3秒前
Sandro完成签到,获得积分10
4秒前
情怀应助three采纳,获得10
4秒前
4秒前
4秒前
Ava应助百尺竿头采纳,获得10
5秒前
司徒恋风完成签到,获得积分10
5秒前
5秒前
6秒前
田様应助YY19891219采纳,获得10
6秒前
思源应助lvyiyi采纳,获得10
6秒前
耶耶完成签到,获得积分10
7秒前
脑洞疼应助myjf采纳,获得10
8秒前
菲菲完成签到 ,获得积分10
8秒前
Joy完成签到,获得积分10
8秒前
英勇乐蕊完成签到,获得积分10
8秒前
orixero应助111采纳,获得10
8秒前
白桃乌龙应助小怪采纳,获得10
8秒前
8秒前
zbearupz完成签到,获得积分10
9秒前
inkkk发布了新的文献求助50
9秒前
Owen应助可靠月亮采纳,获得10
9秒前
半夏彗发布了新的文献求助80
9秒前
10秒前
李健的粉丝团团长应助MF采纳,获得10
10秒前
白宏宝发布了新的文献求助10
11秒前
PaoPao发布了新的文献求助10
11秒前
汉堡包应助QWEN采纳,获得10
11秒前
12秒前
郑奕晖完成签到 ,获得积分10
12秒前
22关闭了22文献求助
12秒前
清脆又晴发布了新的文献求助20
14秒前
自然白安发布了新的文献求助10
15秒前
沫沫完成签到 ,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344