Creation and Testing of a Deep Learning Algorithm to Automatically Identify and Label Vessels, Nerves, Tendons, and Bones on Cross‐sectional Point‐of‐Care Ultrasound Scans for Peripheral Intravenous Catheter Placement by Novices

医学 算法 超声波 最小边界框 点(几何) 人工智能 放射科 计算机科学 图像(数学) 数学 几何学
作者
Michael Blaivas,Robert Arntfield,Matthew White
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:39 (9): 1721-1727 被引量:7
标识
DOI:10.1002/jum.15270
摘要

Objectives We sought to create a deep learning (DL) algorithm to identify vessels, bones, nerves, and tendons on transverse upper extremity (UE) ultrasound (US) images to enable providers new to US‐guided peripheral vascular access to identify anatomy. Methods We used publicly available DL architecture (YOLOv3) and deidentified transverse US videos of the UE for algorithm development. Vessels, bones, tendons, and nerves were labeled with bounding boxes. A total of 203,966 images were generated from videos, with corresponding label box coordinates in a YOLOv3 format. Training accuracy, losses, and learning curves were tracked. As a final real‐world test, 50 randomly selected images from unrelated UE US videos were used to test the DL algorithm. Four different versions of the YOLOv3 algorithm were tested with varied amounts of training and sensitivity settings. The same 50 images were labeled by 2 blinded point‐of‐care ultrasound (POCUS) experts. The area under the curve (AUC) was calculated for the DL algorithm and POCUS expert performance. Results The algorithm outperformed POCUS experts in detection of all structures in the UE, with an AUC of 0.78 versus 0.69 and 0.71, respectively. When considering vessels, only one of the POCUS experts attained an AUC of 0.85, just ahead of the DL algorithm, with an AUC of 0.83. Conclusions Our DL algorithm proved accurate at identifying 4 common structures on cross‐sectional US imaging of the UE, which would allow novice POCUS providers to more confidently and accurately target vessels for cannulation, avoiding other structures. Overall, the algorithm outperformed 2 blinded POCUS experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
刚刚
了喔啰完成签到,获得积分10
刚刚
刚刚
1秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
初雪应助科研通管家采纳,获得10
2秒前
2秒前
田様应助科研通管家采纳,获得30
2秒前
old赵应助夏微凉采纳,获得10
2秒前
dandan发布了新的文献求助10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
初雪应助科研通管家采纳,获得10
3秒前
yuanyueyue发布了新的文献求助10
3秒前
3秒前
田様应助科研通管家采纳,获得30
3秒前
qwe发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
qikkk应助kjdgahdg采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
初雪应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得150
4秒前
大个应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002