自动光学检测
自动X射线检查
目视检查
计算机科学
人工智能
离群值
平版印刷术
计算机视觉
薄脆饼
方向(向量空间)
变形(气象学)
模具(集成电路)
图像处理
图像(数学)
工程类
材料科学
电气工程
几何学
操作系统
光电子学
数学
复合材料
作者
Masanori Ouchi,Masayoshi Ishikawa,Shinichi Shinoda,Yasutaka Toyoda,Ryo Yumiba,Hiroyuki Shindo,Masayuki Izawa
摘要
In the drive toward sub-10-nm semiconductor devices, manufacturers have been developing advanced lithography technologies such as extreme ultraviolet lithography and multiple patterning. However, these technologies can cause unexpected defects, and a high-speed inspection is thus required to cover the entire surface of a wafer. A Die-to-Database (D2DB) inspection is commonly known as a high-speed inspection. The D2DB inspection compares an inspection image with a design layout, so it does not require a reference image for comparing with the inspection image, unlike a die-to-die inspection, thereby achieving a high-speed inspection. However, conventional D2DB inspections suffer from erroneous detection because the manufacturing processes deform the circuit pattern from the design layout, and such deformations will be detected as defects. To resolve this issue, we propose a deep-learning-based D2DB inspection that can distinguish a defect deformation from a normal deformation by learning the luminosity distribution in normal images. Our inspection detects outliers of the learned luminosity distribution as defects. Because our inspection requires only normal images, we can train the model without defect images, which are difficult to obtain with enough variety. In this way, our inspection can detect unseen defects. Through experiments, we show that our inspection can detect only the defect region on an inspection image.
科研通智能强力驱动
Strongly Powered by AbleSci AI