A trainable Die-To-Database for fast e-Beam inspection: learning normal images to detect defects

自动光学检测 自动X射线检查 目视检查 计算机科学 人工智能 离群值 平版印刷术 计算机视觉 薄脆饼 方向(向量空间) 变形(气象学) 模具(集成电路) 图像处理 图像(数学) 工程类 材料科学 电气工程 几何学 操作系统 光电子学 数学 复合材料
作者
Masanori Ouchi,Masayoshi Ishikawa,Shinichi Shinoda,Yasutaka Toyoda,Ryo Yumiba,Hiroyuki Shindo,Masayuki Izawa
标识
DOI:10.1117/12.2551456
摘要

In the drive toward sub-10-nm semiconductor devices, manufacturers have been developing advanced lithography technologies such as extreme ultraviolet lithography and multiple patterning. However, these technologies can cause unexpected defects, and a high-speed inspection is thus required to cover the entire surface of a wafer. A Die-to-Database (D2DB) inspection is commonly known as a high-speed inspection. The D2DB inspection compares an inspection image with a design layout, so it does not require a reference image for comparing with the inspection image, unlike a die-to-die inspection, thereby achieving a high-speed inspection. However, conventional D2DB inspections suffer from erroneous detection because the manufacturing processes deform the circuit pattern from the design layout, and such deformations will be detected as defects. To resolve this issue, we propose a deep-learning-based D2DB inspection that can distinguish a defect deformation from a normal deformation by learning the luminosity distribution in normal images. Our inspection detects outliers of the learned luminosity distribution as defects. Because our inspection requires only normal images, we can train the model without defect images, which are difficult to obtain with enough variety. In this way, our inspection can detect unseen defects. Through experiments, we show that our inspection can detect only the defect region on an inspection image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇撒发布了新的文献求助10
刚刚
馒头吃不起完成签到 ,获得积分10
刚刚
王璐完成签到,获得积分10
刚刚
藿藿完成签到,获得积分10
1秒前
2秒前
秋夏发布了新的文献求助10
2秒前
Charon发布了新的文献求助10
3秒前
科研通AI2S应助冷静新烟采纳,获得10
3秒前
脑洞疼应助Kaka采纳,获得30
3秒前
慕青应助小哥采纳,获得10
3秒前
英俊的铭应助霞霞采纳,获得10
3秒前
刘妞妞应助酷炫翠桃采纳,获得10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
活力安筠应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得30
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
jie酱拌面应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
浮游应助无心的依秋采纳,获得40
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
jie酱拌面应助科研通管家采纳,获得10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
热心子轩应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
搜集达人应助adasdad采纳,获得10
5秒前
all应助科研通管家采纳,获得20
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
178应助科研通管家采纳,获得10
5秒前
w_tiger完成签到 ,获得积分10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
顾矜应助还单身的香菇采纳,获得10
6秒前
聪明无敌小腚宝完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513