A trainable Die-To-Database for fast e-Beam inspection: learning normal images to detect defects

自动光学检测 自动X射线检查 目视检查 计算机科学 人工智能 离群值 平版印刷术 计算机视觉 薄脆饼 方向(向量空间) 变形(气象学) 模具(集成电路) 图像处理 图像(数学) 工程类 材料科学 电气工程 几何学 操作系统 光电子学 数学 复合材料
作者
Masanori Ouchi,Masayoshi Ishikawa,Shinichi Shinoda,Yasutaka Toyoda,Ryo Yumiba,Hiroyuki Shindo,Masayuki Izawa
标识
DOI:10.1117/12.2551456
摘要

In the drive toward sub-10-nm semiconductor devices, manufacturers have been developing advanced lithography technologies such as extreme ultraviolet lithography and multiple patterning. However, these technologies can cause unexpected defects, and a high-speed inspection is thus required to cover the entire surface of a wafer. A Die-to-Database (D2DB) inspection is commonly known as a high-speed inspection. The D2DB inspection compares an inspection image with a design layout, so it does not require a reference image for comparing with the inspection image, unlike a die-to-die inspection, thereby achieving a high-speed inspection. However, conventional D2DB inspections suffer from erroneous detection because the manufacturing processes deform the circuit pattern from the design layout, and such deformations will be detected as defects. To resolve this issue, we propose a deep-learning-based D2DB inspection that can distinguish a defect deformation from a normal deformation by learning the luminosity distribution in normal images. Our inspection detects outliers of the learned luminosity distribution as defects. Because our inspection requires only normal images, we can train the model without defect images, which are difficult to obtain with enough variety. In this way, our inspection can detect unseen defects. Through experiments, we show that our inspection can detect only the defect region on an inspection image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
琢钰发布了新的文献求助10
刚刚
2秒前
3秒前
3秒前
合成不出来啊完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
5秒前
悬铃木发布了新的文献求助30
5秒前
7秒前
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
eric888应助科研通管家采纳,获得100
7秒前
元谷雪应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得20
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
wangqianyu发布了新的文献求助10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
成就凡双应助科研通管家采纳,获得10
8秒前
eric888应助科研通管家采纳,获得100
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
元谷雪应助科研通管家采纳,获得10
8秒前
成就凡双应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
侯总应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
彩色发布了新的文献求助10
9秒前
脑洞疼应助坚强的凡双采纳,获得10
9秒前
9秒前
10秒前
幽默抽屉发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589919
求助须知:如何正确求助?哪些是违规求助? 4674386
关于积分的说明 14793761
捐赠科研通 4629344
什么是DOI,文献DOI怎么找? 2532468
邀请新用户注册赠送积分活动 1501123
关于科研通互助平台的介绍 1468527