A trainable Die-To-Database for fast e-Beam inspection: learning normal images to detect defects

自动光学检测 自动X射线检查 目视检查 计算机科学 人工智能 离群值 平版印刷术 计算机视觉 薄脆饼 方向(向量空间) 变形(气象学) 模具(集成电路) 图像处理 图像(数学) 工程类 材料科学 电气工程 几何学 操作系统 光电子学 数学 复合材料
作者
Masanori Ouchi,Masayoshi Ishikawa,Shinichi Shinoda,Yasutaka Toyoda,Ryo Yumiba,Hiroyuki Shindo,Masayuki Izawa
标识
DOI:10.1117/12.2551456
摘要

In the drive toward sub-10-nm semiconductor devices, manufacturers have been developing advanced lithography technologies such as extreme ultraviolet lithography and multiple patterning. However, these technologies can cause unexpected defects, and a high-speed inspection is thus required to cover the entire surface of a wafer. A Die-to-Database (D2DB) inspection is commonly known as a high-speed inspection. The D2DB inspection compares an inspection image with a design layout, so it does not require a reference image for comparing with the inspection image, unlike a die-to-die inspection, thereby achieving a high-speed inspection. However, conventional D2DB inspections suffer from erroneous detection because the manufacturing processes deform the circuit pattern from the design layout, and such deformations will be detected as defects. To resolve this issue, we propose a deep-learning-based D2DB inspection that can distinguish a defect deformation from a normal deformation by learning the luminosity distribution in normal images. Our inspection detects outliers of the learned luminosity distribution as defects. Because our inspection requires only normal images, we can train the model without defect images, which are difficult to obtain with enough variety. In this way, our inspection can detect unseen defects. Through experiments, we show that our inspection can detect only the defect region on an inspection image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助limeOrca采纳,获得10
1秒前
红雪0801发布了新的文献求助10
2秒前
归尘发布了新的文献求助20
3秒前
胡杨树2006完成签到,获得积分10
4秒前
谦让以筠发布了新的文献求助10
4秒前
zhangpp发布了新的文献求助10
7秒前
纪震宇发布了新的文献求助10
8秒前
9秒前
王崇霖发布了新的文献求助10
13秒前
14秒前
NexusExplorer应助Marciu33采纳,获得20
17秒前
CodeCraft应助周游采纳,获得10
17秒前
瞿寒发布了新的文献求助10
19秒前
19秒前
天天快乐应助xiaoxiao采纳,获得10
19秒前
zhangpp完成签到,获得积分10
19秒前
19秒前
20秒前
打打应助骑驴找马采纳,获得10
21秒前
21秒前
朱光辉完成签到,获得积分10
22秒前
念姬发布了新的文献求助10
24秒前
瞿寒完成签到,获得积分10
24秒前
赵医生发布了新的文献求助10
25秒前
阳光的紊应助xiongdi521采纳,获得30
25秒前
李健应助闪闪飞柏采纳,获得10
26秒前
方法发布了新的文献求助10
28秒前
28秒前
小二郎应助yhx046采纳,获得10
30秒前
30秒前
31秒前
TT发布了新的文献求助10
35秒前
36秒前
科研通AI2S应助哈哈哈采纳,获得30
37秒前
小二郎应助赵医生采纳,获得10
38秒前
完美世界应助方法采纳,获得10
38秒前
38秒前
39秒前
平常的半凡应助Jiaowen采纳,获得10
40秒前
您得疼完成签到,获得积分20
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962932
求助须知:如何正确求助?哪些是违规求助? 3508908
关于积分的说明 11143865
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579