A trainable Die-To-Database for fast e-Beam inspection: learning normal images to detect defects

自动光学检测 自动X射线检查 目视检查 计算机科学 人工智能 离群值 平版印刷术 计算机视觉 薄脆饼 方向(向量空间) 变形(气象学) 模具(集成电路) 图像处理 图像(数学) 工程类 材料科学 电气工程 几何学 操作系统 光电子学 数学 复合材料
作者
Masanori Ouchi,Masayoshi Ishikawa,Shinichi Shinoda,Yasutaka Toyoda,Ryo Yumiba,Hiroyuki Shindo,Masayuki Izawa
标识
DOI:10.1117/12.2551456
摘要

In the drive toward sub-10-nm semiconductor devices, manufacturers have been developing advanced lithography technologies such as extreme ultraviolet lithography and multiple patterning. However, these technologies can cause unexpected defects, and a high-speed inspection is thus required to cover the entire surface of a wafer. A Die-to-Database (D2DB) inspection is commonly known as a high-speed inspection. The D2DB inspection compares an inspection image with a design layout, so it does not require a reference image for comparing with the inspection image, unlike a die-to-die inspection, thereby achieving a high-speed inspection. However, conventional D2DB inspections suffer from erroneous detection because the manufacturing processes deform the circuit pattern from the design layout, and such deformations will be detected as defects. To resolve this issue, we propose a deep-learning-based D2DB inspection that can distinguish a defect deformation from a normal deformation by learning the luminosity distribution in normal images. Our inspection detects outliers of the learned luminosity distribution as defects. Because our inspection requires only normal images, we can train the model without defect images, which are difficult to obtain with enough variety. In this way, our inspection can detect unseen defects. Through experiments, we show that our inspection can detect only the defect region on an inspection image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
bjbmtxy应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
Lucas应助林小乌龟采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
一叶知秋应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
1秒前
小青椒应助vivelejrlee采纳,获得40
1秒前
ghkjl应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
1秒前
Mic应助科研通管家采纳,获得10
1秒前
花卷花卷应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
科研通AI2S应助微光采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得30
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
nooooorae应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
bjbmtxy应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049