自噬
纤维化
转化生长因子
激酶
信号转导
癌基因
内科学
分子医学
生物
MAPK/ERK通路
内分泌学
p38丝裂原活化蛋白激酶
细胞凋亡
医学
细胞生物学
细胞周期
生物化学
作者
Chuncha Bao,Zhong Yang,Qiyan Cai,Qian Li,Hongli Li,Bin Shu
标识
DOI:10.3892/ijmm.2019.4344
摘要
Recent studies have confirmed that kidney tissue fibrosis is closely linked to the natural aging of organs. One of its major characteristics is the reduction of autophagic activity. However, to date, few studies have assessed whether incremental load training is able to improve the occurrence of renal fibrosis caused by natural aging and the underlying mechanisms. In the present study involving male C57/BL mice, an elderly exercise group (OY group) was subjected to progressive load‑increasing rotary‑bar training (5 days/week, lasting for 6 weeks), with an elderly control group (OC group) and a young control group (YC group) used as controls. Renal fibrosis and autophagy‑associated indicators were assessed by Masson's staining, reverse transcription‑quantitative PCR analysis, western blotting, immunofluorescence and transmission electron microscopy. The results suggested that collagen deposition in the basal part of the renal tubular epithelium and glomeruli in the OY group was significantly lower than that in the OC group. In the OC group, the protein expression levels of E‑cadherin, Beclin 1 and light chain 3 were significantly decreased, and increases in α‑smooth muscle actin‑positive signals were observed in the glomerular matrix and renal capsule wall. Furthermore, the expression of transforming growth factor (TGF)‑β1 and its downstream signaling molecules TGF‑β‑activated kinase 1 (TAK1), mitogen‑activated protein kinase (MAPK) kinase (MKK3) and p38MAPK were downregulated following training. The present study confirmed that incremental load training may improve renal fibrosis in aged mice by regulating the TGF‑β1/TAK1/MMK3/p38MAPK signaling pathway and inducing the activation of autophagy to reduce the synthesis of extracellular matrix and delay the epithelial‑mesenchymal transition. The present study provides a novel experimental basis for the intervention of incremental load training to prevent senile renal fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI