已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image processing algorithms for infield single cotton boll counting and yield prediction

人工智能 阈值 数学 行裁剪 图像处理 模式识别(心理学) 霍夫变换 计算机科学 算法 图像(数学) 农业 地理 考古
作者
Shangpeng Sun,Changying Li,Andrew H. Paterson,Peng W. Chee,Jon S. Robertson
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:166: 104976-104976 被引量:41
标识
DOI:10.1016/j.compag.2019.104976
摘要

Cotton boll number is an important component of fiber yield, arguably the most important phenotypic trait to plant breeders and growers alike. In addition, boll number provides a better understanding on the physiological and genetic mechanisms of crop growth and development, facilitating timely decisions on crop management to maximize profit. Traditional in-field cotton boll number counting by visual inspection is time consuming and labor-intensive. In this work, we presented novel image processing algorithms for automatic single cotton boll recognition and counting under natural illumination in the field. A digital camera mounted on a robot platform was used to acquire images with a 45° downward angle on three different days before harvest. A double-thresholding with region growth algorithm combining color and spatial features was applied to segment bolls from background, and three geometric-feature-based algorithms were developed to estimate boll number. Line features detected by linear Hough Transform and the minimum boundary distance between two regions were used to merge disjointed regions split by branches and burrs, respectively. The area and the elongation ratio between major and minor axes were used to separate bolls overlapping in clusters. A total of 210 images captured under sunny and cloudy illumination conditions on three days were used to validate the performance of the cotton boll recognition method, with an F1 score of around 0.98; whereas, the best accuracy for boll counting was around 84.6%. At the whole plot level, fifteen plots were used to build a linear regression model between the estimated boll number and the overall fiber yield with a R2 value of 0.53. The performance was evaluated by another ten plots with a mean absolute percentage error of 8.92% and a root mean square error of 99 g. The methodology developed in this study provides a means to estimate cotton boll number from color images under field conditions and would be helpful to predict crop yield and understand genetic mechanisms of crop growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
广州小肥羊完成签到 ,获得积分10
刚刚
小蘑菇应助幽默尔蓝采纳,获得10
2秒前
2秒前
7秒前
new完成签到 ,获得积分10
8秒前
8秒前
平底锅攻击完成签到 ,获得积分10
9秒前
张子捷发布了新的文献求助10
9秒前
马燕颜发布了新的文献求助10
11秒前
11秒前
new关注了科研通微信公众号
11秒前
CC完成签到 ,获得积分10
12秒前
12秒前
张轩发布了新的文献求助10
13秒前
15秒前
欧气满满完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
田様应助科研通管家采纳,获得10
16秒前
不配.应助科研通管家采纳,获得50
16秒前
烟花应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
Gxmmmm_应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
18秒前
Gxmmmm_应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
纯牛奶发布了新的文献求助10
19秒前
24秒前
ygtrece1337发布了新的文献求助10
24秒前
hzzzzzz发布了新的文献求助30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924963
求助须知:如何正确求助?哪些是违规求助? 4195117
关于积分的说明 13030291
捐赠科研通 3966853
什么是DOI,文献DOI怎么找? 2174302
邀请新用户注册赠送积分活动 1191684
关于科研通互助平台的介绍 1101172