Image processing algorithms for infield single cotton boll counting and yield prediction

人工智能 阈值 数学 行裁剪 图像处理 模式识别(心理学) 霍夫变换 计算机科学 算法 图像(数学) 农业 地理 考古
作者
Shangpeng Sun,Changying Li,Andrew H. Paterson,Peng W. Chee,Jon S. Robertson
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:166: 104976-104976 被引量:41
标识
DOI:10.1016/j.compag.2019.104976
摘要

Cotton boll number is an important component of fiber yield, arguably the most important phenotypic trait to plant breeders and growers alike. In addition, boll number provides a better understanding on the physiological and genetic mechanisms of crop growth and development, facilitating timely decisions on crop management to maximize profit. Traditional in-field cotton boll number counting by visual inspection is time consuming and labor-intensive. In this work, we presented novel image processing algorithms for automatic single cotton boll recognition and counting under natural illumination in the field. A digital camera mounted on a robot platform was used to acquire images with a 45° downward angle on three different days before harvest. A double-thresholding with region growth algorithm combining color and spatial features was applied to segment bolls from background, and three geometric-feature-based algorithms were developed to estimate boll number. Line features detected by linear Hough Transform and the minimum boundary distance between two regions were used to merge disjointed regions split by branches and burrs, respectively. The area and the elongation ratio between major and minor axes were used to separate bolls overlapping in clusters. A total of 210 images captured under sunny and cloudy illumination conditions on three days were used to validate the performance of the cotton boll recognition method, with an F1 score of around 0.98; whereas, the best accuracy for boll counting was around 84.6%. At the whole plot level, fifteen plots were used to build a linear regression model between the estimated boll number and the overall fiber yield with a R2 value of 0.53. The performance was evaluated by another ten plots with a mean absolute percentage error of 8.92% and a root mean square error of 99 g. The methodology developed in this study provides a means to estimate cotton boll number from color images under field conditions and would be helpful to predict crop yield and understand genetic mechanisms of crop growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
牧歌发布了新的文献求助30
1秒前
QQiang6发布了新的文献求助10
2秒前
3秒前
孟欣玥发布了新的文献求助10
3秒前
机灵的囧完成签到,获得积分10
4秒前
llll发布了新的文献求助10
4秒前
6秒前
7秒前
9秒前
TMX完成签到,获得积分20
9秒前
soldatJiang发布了新的文献求助10
10秒前
NL14D发布了新的文献求助10
10秒前
wq1020完成签到,获得积分10
10秒前
10秒前
科研通AI5应助孟欣玥采纳,获得20
11秒前
11秒前
Ava应助什么东西这么好看采纳,获得10
11秒前
超级丝发布了新的文献求助10
11秒前
TMX发布了新的文献求助10
14秒前
星星完成签到,获得积分10
14秒前
wenbinvan完成签到,获得积分0
14秒前
16秒前
科研通AI2S应助SAVP采纳,获得10
16秒前
Lycerdoctor发布了新的文献求助10
16秒前
李健应助wudan采纳,获得10
17秒前
17秒前
ANmin发布了新的文献求助10
17秒前
Inory007发布了新的文献求助10
18秒前
18秒前
桐桐应助冰棍采纳,获得10
18秒前
牧歌完成签到,获得积分0
18秒前
烟花应助怡然的一斩采纳,获得10
18秒前
19秒前
19秒前
SciGPT应助Nxxxxxx采纳,获得10
19秒前
20秒前
丘比特应助汪汪采纳,获得10
20秒前
千余发布了新的文献求助10
20秒前
田様应助爱听歌的树叶采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028