Liquid Chromatography–Mass Spectrometry-Based Nontargeted Metabolomics Predicts Prognosis of Hepatocellular Carcinoma after Curative Resection

代谢组学 肝细胞癌 医学 比例危险模型 内科学 肿瘤科 接收机工作特性 代谢物 多元统计 多元分析 生物信息学 生物 计算机科学 机器学习
作者
Qingqing Wang,Benzhe Su,Liwei Dong,Tianyi Jiang,Ye-Xiong Tan,Xin Lü,Xinyu Liu,Xiaohui Lin,Guowang Xu
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:19 (8): 3533-3541 被引量:14
标识
DOI:10.1021/acs.jproteome.0c00344
摘要

Assessment and prediction of prognostic risk in patients with hepatocellular carcinoma (HCC) would greatly benefit the optimal treatment selection. Here, we aimed to identify the critical metabolites associated with the outcomes and develop a risk score to assess the prognosis of HCC patients after curative resection. A total of 78 serum samples of HCC patients were analyzed by liquid chromatography–mass spectrometry to characterize the metabolic profiling. A novel network-based feature selection method (NFSM) was developed to define the critical metabolites with the most discriminant capacity to outcomes. The metabolites defined by NFSM was further reduced by Cox regression analysis to generate a prognostic metabolite panel—phenylalanine and choline. Furthermore, univariate and multivariate Cox regression analyses were applied to combine the metabolite panel with the presence of satellite nodes to generate a global prognostic index (GPI) score for overall survival assessment. Compared with the current clinical classification systems, including the Barcelona-clinic liver cancer stage, tumor–node–metastasis stage, and albumin–bilirubin grade, the GPI score presented comparable performance, according to the time-dependent receiver operating characteristic curves and was validated in an independent cohort, which suggested that metabolomics could serve as a helpful tool to stratify the HCC prognostic risk after operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宓广缘完成签到,获得积分10
1秒前
lettuce完成签到,获得积分10
1秒前
2秒前
2秒前
调皮的又菱完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
dw完成签到,获得积分20
3秒前
Hey发布了新的文献求助10
3秒前
3秒前
晓MING发布了新的文献求助10
4秒前
4秒前
4秒前
木耳发布了新的文献求助30
4秒前
4秒前
披风发布了新的文献求助10
5秒前
Nakyseo完成签到,获得积分10
5秒前
wanci应助cctoday采纳,获得10
5秒前
lonelymusic完成签到,获得积分10
5秒前
认真千凡完成签到,获得积分10
6秒前
兴奋中道发布了新的文献求助10
6秒前
6秒前
暗夜男完成签到 ,获得积分10
6秒前
talksilence完成签到,获得积分10
7秒前
orixero应助武雨珍采纳,获得30
7秒前
7秒前
五六七完成签到,获得积分10
7秒前
kkai发布了新的文献求助20
8秒前
王小二发布了新的文献求助10
8秒前
bbll完成签到,获得积分10
9秒前
郝宝真发布了新的文献求助10
9秒前
大模型应助li采纳,获得10
9秒前
港港完成签到 ,获得积分10
9秒前
rossliyi发布了新的文献求助10
9秒前
9秒前
上官若男应助包远锋采纳,获得30
9秒前
10秒前
勤奋的7完成签到,获得积分10
10秒前
10秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587