神经形态工程学
记忆电阻器
锡
功率(物理)
电气工程
光电子学
图层(电子)
计算机科学
材料科学
电子工程
拓扑(电路)
人工神经网络
物理
人工智能
纳米技术
工程类
量子力学
冶金
作者
Yifan Lu,Yi Li,Haoyang Li,Tianqing Wan,Xiaodi Huang,Yuhui He,Xiangshui Miao
标识
DOI:10.1109/led.2020.3006581
摘要
Threshold switching (TS) devices are promising candidates to build highly compact and energy efficient artificial neurons. Here, we present a Pt/Ag/TiN/HfAlO x /Pt (PATHP) device with excellent TS characteristics, including a large selectivity(10 10 ), a wide range of operation current from 10 nA to 1 mA, an extremely steep slope (0.63 mV/dec) and fast turn-on speed (50 ns). The stable TS performance can be ascribed to the introduction of TiN buffer layer and the alternate atomic layer deposited HfAlOx layer. Further, we experimentally demonstrate the functions of leaky-integrate-and-fire neurons with low power feature based on a RC circuit and a single device, respectively, which are essential for constructing spiking neuromorphic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI