Rapid monitoring approaches for concentration process of lanqin oral solution by near-infrared spectroscopy and chemometric models

偏最小二乘回归 黄芩苷 化学计量学 过程分析技术 残余物 极限学习机 近红外光谱 化学 生物系统 数学 计算机科学 色谱法 人工智能 统计 算法 工程类 人工神经网络 高效液相色谱法 物理 生物过程 生物 量子力学 化学工程
作者
Hui Ma,Hongye Pan,Danguang Pan,Hongfei Ni,Xuejing Feng,Xuesong Liu,Yong Chen,Yongjiang Wu,Niu Luo
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:242: 118792-118792 被引量:6
标识
DOI:10.1016/j.saa.2020.118792
摘要

Qualitative and quantitative detection methods based on near-infrared spectroscopy (NIRs) have been proposed in the process analysis of traditional Chinese medicine in recent years. In this study, rapid monitoring methods were developed for quality control of concentration process of lanqin oral solution (LOS). Partial least squares regression (PLSR) method was adopted to construct quantitative models for epigoitrin, geniposide, baicalin, berberine hydrochloride and density. Simultaneously, the genetic algorithm joint extreme learning machine (GA-ELM) was first applied in qualitative analysis of NIRs to distinguish end point of concentration process. Results of PLSR models were satisfactory with the relative standard error of calibration valued at 3.80%, 3.75%, 3.79%, 11.5% and 1.22% for epigoitrin, geniposide, baicalin, berberine hydrochloride and density respectively, and the residual predictive deviation values were higher than 3. For qualitative analysis, the GA-ELM model obtained 100% prediction accuracy. The PLSR quantitative models and the end point discrimination model constructed by GA-ELM correspond with the requirements of practical applications. The results indicate that NIRs in combination with chemometrics has great potential in improving the efficiency in production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
七里香完成签到 ,获得积分10
刚刚
handsomecat关注了科研通微信公众号
刚刚
细心映寒完成签到 ,获得积分10
刚刚
刚刚
fff完成签到,获得积分10
刚刚
领导范儿应助MJQ采纳,获得100
刚刚
1秒前
Owen应助世界尽头采纳,获得10
1秒前
echolan发布了新的文献求助10
2秒前
SID完成签到,获得积分10
2秒前
中九完成签到 ,获得积分10
2秒前
Rrr完成签到,获得积分10
2秒前
hehuan0520完成签到,获得积分10
2秒前
2秒前
打打应助chinning采纳,获得10
2秒前
桐桐应助wangyanyan采纳,获得10
3秒前
3秒前
zzznznnn发布了新的文献求助10
3秒前
jogrgr发布了新的文献求助10
4秒前
sun发布了新的文献求助10
4秒前
布鲁鲁发布了新的文献求助10
4秒前
自信晟睿完成签到,获得积分10
4秒前
酷波er应助哒哒采纳,获得10
5秒前
5秒前
沉默乐荷完成签到,获得积分10
5秒前
rstorz应助皮尤尤采纳,获得10
5秒前
sweetbearm应助小离采纳,获得10
5秒前
何青岚关注了科研通微信公众号
6秒前
doudou完成签到,获得积分20
6秒前
李健的小迷弟应助潦草采纳,获得10
6秒前
7秒前
7秒前
7秒前
柒八染完成签到,获得积分10
7秒前
wsljc134完成签到,获得积分20
7秒前
8秒前
善良香岚完成签到,获得积分20
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759