电介质
聚乙烯醇
材料科学
放松(心理学)
温度循环
活化能
聚合物
化学工程
相(物质)
复合材料
高分子化学
热力学
化学
热的
物理化学
有机化学
心理学
社会心理学
物理
工程类
光电子学
作者
Nuwansiri Nirosh Getangama,John R. de Bruyn,Jeffrey L. Hutter
摘要
Solutions of polyvinyl alcohol (PVA) in water can form gels upon repeated freezing and thawing. These PVA cryogels have applications as biomaterials, including artificial tissue and drug delivery systems. We have studied the dielectric properties of PVA cryogels within the freeze–thaw cycles as a function of both frequency and temperature in order to understand the physical changes that take place during the thermal cycling process. Our results indicate that most of the changes in dielectric properties occur during the cooling phase of the first cycle and suggest that the solution must be cooled below a critical temperature of about 263 K for the formation of a gel that persists after thawing. The material’s dielectric spectrum shows the presence of several relaxation processes. We identify one of these with the dielectric relaxation of ice and two others with motions of the PVA polymer chains. The temperature dependence of the polymeric relaxation times suggests that they are both thermally activated, with an activation energy of roughly 300 kJ/mol.
科研通智能强力驱动
Strongly Powered by AbleSci AI