Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 计算机视觉 图像(数学) 分割 迭代重建
作者
Pengfei Guo,Puyang Wang,Rajeev Yasarla,Jinyuan Zhou,Vishal M. Patel,Shanshan Jiang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (10): 2832-2844 被引量:5
标识
DOI:10.1109/tmi.2020.3046460
摘要

Data-driven automatic approaches have demonstrated their great potential in resolving various clinical diagnostic dilemmas in neuro-oncology, especially with the help of standard anatomic and advanced molecular MR images. However, data quantity and quality remain a key determinant, and a significant limit of the potential applications. In our previous work, we explored the synthesis of anatomic and molecular MR image networks (SAMR) in patients with post-treatment malignant gliomas. In this work, we extend this through a confidence-guided SAMR (CG-SAMR) that synthesizes data from lesion contour information to multi-modal MR images, including T1-weighted ( ${T}_{1}\text{w}$ ), gadolinium enhanced ${T}_{1}\text{w}$ (Gd- ${T}_{1}\text{w}$ ), T2-weighted ( ${T}_{2}\text{w}$ ), and fluid-attenuated inversion recovery ( $\textit {FLAIR}$ ), as well as the molecular amide proton transfer-weighted ( $\textit {APT}\text{w}$ ) sequence. We introduce a module that guides the synthesis based on a confidence measure of the intermediate results. Furthermore, we extend the proposed architecture to allow training using unpaired data. Extensive experiments on real clinical data demonstrate that the proposed model can perform better than current the state-of-the-art synthesis methods. Our code is available at https://github.com/guopengf/CG-SAMR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小囧发布了新的文献求助10
1秒前
1秒前
1秒前
SmuA发布了新的文献求助10
2秒前
谨言完成签到 ,获得积分10
2秒前
神勇猕猴桃完成签到,获得积分10
2秒前
ljj001ljj发布了新的文献求助10
2秒前
完美世界应助QZZ采纳,获得10
2秒前
3秒前
机智的琪完成签到 ,获得积分10
4秒前
wanci应助法号胡来采纳,获得10
4秒前
4秒前
5秒前
思源应助老实皮卡丘采纳,获得10
5秒前
星辰大海应助研友_8y2G0L采纳,获得10
6秒前
科研通AI2S应助认真的傲柏采纳,获得10
6秒前
科研通AI2S应助彪壮的元柏采纳,获得10
7秒前
renlangfen发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
herz完成签到 ,获得积分10
8秒前
Leslie完成签到,获得积分10
9秒前
NexusExplorer应助mumeinv采纳,获得10
10秒前
潇洒板凳完成签到,获得积分10
11秒前
领导范儿应助小囧采纳,获得10
11秒前
NXK发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
大模型应助luodaxia采纳,获得10
12秒前
该换手机发布了新的文献求助10
13秒前
今后应助mmmaple采纳,获得10
14秒前
wjx发布了新的文献求助10
14秒前
15秒前
17秒前
17秒前
搜集达人应助诉与山风听采纳,获得10
17秒前
老八完成签到,获得积分10
17秒前
陶醉的剑身完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313270
求助须知:如何正确求助?哪些是违规求助? 2945680
关于积分的说明 8526586
捐赠科研通 2621440
什么是DOI,文献DOI怎么找? 1433542
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650568