Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 计算机视觉 图像(数学) 分割 迭代重建
作者
Pengfei Guo,Puyang Wang,Rajeev Yasarla,Jinyuan Zhou,Vishal M. Patel,Shanshan Jiang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (10): 2832-2844 被引量:5
标识
DOI:10.1109/tmi.2020.3046460
摘要

Data-driven automatic approaches have demonstrated their great potential in resolving various clinical diagnostic dilemmas in neuro-oncology, especially with the help of standard anatomic and advanced molecular MR images. However, data quantity and quality remain a key determinant, and a significant limit of the potential applications. In our previous work, we explored the synthesis of anatomic and molecular MR image networks (SAMR) in patients with post-treatment malignant gliomas. In this work, we extend this through a confidence-guided SAMR (CG-SAMR) that synthesizes data from lesion contour information to multi-modal MR images, including T1-weighted ( ${T}_{1}\text{w}$ ), gadolinium enhanced ${T}_{1}\text{w}$ (Gd- ${T}_{1}\text{w}$ ), T2-weighted ( ${T}_{2}\text{w}$ ), and fluid-attenuated inversion recovery ( $\textit {FLAIR}$ ), as well as the molecular amide proton transfer-weighted ( $\textit {APT}\text{w}$ ) sequence. We introduce a module that guides the synthesis based on a confidence measure of the intermediate results. Furthermore, we extend the proposed architecture to allow training using unpaired data. Extensive experiments on real clinical data demonstrate that the proposed model can perform better than current the state-of-the-art synthesis methods. Our code is available at https://github.com/guopengf/CG-SAMR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木仓完成签到,获得积分10
2秒前
davidwuran发布了新的文献求助10
2秒前
3秒前
4秒前
科研通AI5应助HX采纳,获得10
4秒前
5秒前
5秒前
5秒前
科研通AI6应助安好元素采纳,获得10
6秒前
sweetrumors发布了新的文献求助10
7秒前
8秒前
9秒前
fishnewone发布了新的文献求助10
10秒前
健忘捕发布了新的文献求助10
10秒前
10秒前
Jasper应助昨夜書采纳,获得10
10秒前
浮游应助周em12_采纳,获得10
12秒前
davidwuran完成签到,获得积分20
12秒前
closeboy完成签到 ,获得积分10
12秒前
nan应助文静修杰采纳,获得10
13秒前
HX发布了新的文献求助10
14秒前
安赛虫发布了新的文献求助10
14秒前
隐形曼青应助小闵采纳,获得10
15秒前
倪妮发布了新的文献求助10
15秒前
惊吓小狗完成签到,获得积分10
15秒前
15秒前
小冉发布了新的文献求助10
16秒前
17秒前
18秒前
充电宝应助cencen采纳,获得10
18秒前
18秒前
dreamplayer完成签到,获得积分10
19秒前
充电宝应助安赛虫采纳,获得10
20秒前
An完成签到,获得积分10
20秒前
20秒前
04711发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206671
求助须知:如何正确求助?哪些是违规求助? 4384965
关于积分的说明 13655394
捐赠科研通 4243406
什么是DOI,文献DOI怎么找? 2328064
邀请新用户注册赠送积分活动 1325747
关于科研通互助平台的介绍 1277928