亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolving Scheduling Heuristics via Genetic Programming With Feature Selection in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 流水车间调度 动态优先级调度 遗传程序设计 调度(生产过程) 单调速率调度 两级调度 公平份额计划 人工智能 特征选择 机器学习 数学优化 数学 地铁列车时刻表 操作系统
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (4): 1797-1811 被引量:227
标识
DOI:10.1109/tcyb.2020.3024849
摘要

Dynamic flexible job-shop scheduling (DFJSS) is a challenging combinational optimization problem that takes the dynamic environment into account. Genetic programming hyperheuristics (GPHH) have been widely used to evolve scheduling heuristics for job-shop scheduling. A proper selection of the terminal set is a critical factor for the success of GPHH. However, there is a wide range of features that can capture different characteristics of the job-shop state. Moreover, the importance of a feature is unclear from one scenario to another. The irrelevant and redundant features may lead to performance limitations. Feature selection is an important task to select relevant and complementary features. However, little work has considered feature selection in GPHH for DFJSS. In this article, a novel two-stage GPHH framework with feature selection is designed to evolve scheduling heuristics only with the selected features for DFJSS automatically. Meanwhile, individual adaptation strategies are proposed to utilize the information of both the selected features and the investigated individuals during the feature selection process. The results show that the proposed algorithm can successfully achieve more interpretable scheduling heuristics with fewer unique features and smaller sizes. In addition, the proposed algorithm can reach comparable scheduling heuristic quality with much shorter training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻真好啊完成签到,获得积分10
刚刚
BowieHuang应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
花陵完成签到 ,获得积分10
6秒前
6秒前
xhlxhl完成签到,获得积分10
14秒前
16秒前
kk发布了新的文献求助10
20秒前
林强完成签到,获得积分10
20秒前
Liuxiaoliu完成签到 ,获得积分10
27秒前
30秒前
36秒前
swan完成签到 ,获得积分10
36秒前
xuyan发布了新的文献求助30
37秒前
40秒前
41秒前
五博发布了新的文献求助10
41秒前
kk完成签到,获得积分10
43秒前
TangSEU发布了新的文献求助10
44秒前
xiaohan,JIA完成签到,获得积分10
46秒前
苗龙伟完成签到 ,获得积分10
49秒前
50秒前
50秒前
51秒前
爆米花应助TangSEU采纳,获得10
53秒前
chen发布了新的文献求助10
54秒前
54秒前
liruixin发布了新的文献求助10
55秒前
氯雷他定发布了新的文献求助10
57秒前
1分钟前
氯雷他定完成签到,获得积分10
1分钟前
1分钟前
1分钟前
HL773发布了新的文献求助10
1分钟前
Hello应助沐阳采纳,获得10
1分钟前
C_Cppp完成签到 ,获得积分10
1分钟前
沐阳完成签到,获得积分10
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723397
求助须知:如何正确求助?哪些是违规求助? 5276618
关于积分的说明 15298565
捐赠科研通 4871890
什么是DOI,文献DOI怎么找? 2616321
邀请新用户注册赠送积分活动 1566167
关于科研通互助平台的介绍 1523041