Evolving Scheduling Heuristics via Genetic Programming With Feature Selection in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 流水车间调度 动态优先级调度 遗传程序设计 调度(生产过程) 单调速率调度 两级调度 公平份额计划 人工智能 特征选择 机器学习 数学优化 数学 地铁列车时刻表 操作系统
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (4): 1797-1811 被引量:169
标识
DOI:10.1109/tcyb.2020.3024849
摘要

Dynamic flexible job-shop scheduling (DFJSS) is a challenging combinational optimization problem that takes the dynamic environment into account. Genetic programming hyperheuristics (GPHH) have been widely used to evolve scheduling heuristics for job-shop scheduling. A proper selection of the terminal set is a critical factor for the success of GPHH. However, there is a wide range of features that can capture different characteristics of the job-shop state. Moreover, the importance of a feature is unclear from one scenario to another. The irrelevant and redundant features may lead to performance limitations. Feature selection is an important task to select relevant and complementary features. However, little work has considered feature selection in GPHH for DFJSS. In this article, a novel two-stage GPHH framework with feature selection is designed to evolve scheduling heuristics only with the selected features for DFJSS automatically. Meanwhile, individual adaptation strategies are proposed to utilize the information of both the selected features and the investigated individuals during the feature selection process. The results show that the proposed algorithm can successfully achieve more interpretable scheduling heuristics with fewer unique features and smaller sizes. In addition, the proposed algorithm can reach comparable scheduling heuristic quality with much shorter training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助10
2秒前
2秒前
星辰大海应助玥来玥好采纳,获得10
4秒前
4秒前
坦率的松完成签到 ,获得积分10
7秒前
秦子越发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助个性的茹妖采纳,获得10
10秒前
Jinyi发布了新的文献求助10
10秒前
夜已深完成签到,获得积分10
13秒前
圆圆完成签到,获得积分10
13秒前
天真彩虹完成签到 ,获得积分10
14秒前
18秒前
Lucas应助liugm采纳,获得10
18秒前
23秒前
24秒前
25秒前
汉堡包应助热心的语堂采纳,获得10
25秒前
25秒前
26秒前
周周完成签到,获得积分20
27秒前
27秒前
云云邶完成签到,获得积分10
27秒前
xx完成签到,获得积分20
30秒前
Lily发布了新的文献求助30
31秒前
Nayuta48发布了新的文献求助10
31秒前
意忆发布了新的文献求助10
31秒前
周周发布了新的文献求助30
33秒前
小羊子应助xx采纳,获得30
34秒前
35秒前
36秒前
坦率的依风完成签到 ,获得积分10
36秒前
41秒前
米夏完成签到 ,获得积分10
41秒前
意忆完成签到,获得积分10
41秒前
烬屋藏娇完成签到,获得积分10
42秒前
优秀的寄容完成签到,获得积分20
45秒前
追寻的山晴应助孙卫平采纳,获得10
47秒前
bkagyin应助精明曲奇采纳,获得10
48秒前
wanci应助害羞的盼海采纳,获得10
48秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267632
求助须知:如何正确求助?哪些是违规求助? 2907088
关于积分的说明 8340578
捐赠科研通 2577809
什么是DOI,文献DOI怎么找? 1401227
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633974