Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning

流式细胞术 生物 卷积神经网络 计算生物学 细胞仪 单元格排序 基因表达 基因 人工智能 计算机科学 分子生物学 遗传学
作者
Nikolaos‐Kosmas Chlis,Lisa Rausch,Thomas Brocker,Jan Kranich,Fabian J. Theis
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:48 (20): 11335-11346 被引量:16
标识
DOI:10.1093/nar/gkaa926
摘要

Abstract High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying cellular properties and functions at scale. Recent studies have demonstrated that information in large imaging datasets can be used to estimate gene mutations and to predict the cell-cycle state and the cellular decision making directly from cellular morphology. Thus, high-throughput imaging methodologies, such as imaging flow cytometry can potentially aim beyond simple sorting of cell-populations. We introduce IFC-seq, a machine learning methodology for predicting the expression profile of every cell in an imaging flow cytometry experiment. Since it is to-date unfeasible to observe single-cell gene expression and morphology in flow, we integrate uncoupled imaging data with an independent transcriptomics dataset by leveraging common surface markers. We demonstrate that IFC-seq successfully models gene expression of a moderate number of key gene-markers for two independent imaging flow cytometry datasets: (i) human blood mononuclear cells and (ii) mouse myeloid progenitor cells. In the case of mouse myeloid progenitor cells IFC-seq can predict gene expression directly from brightfield images in a label-free manner, using a convolutional neural network. The proposed method promises to add gene expression information to existing and new imaging flow cytometry datasets, at no additional cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
孤檠完成签到,获得积分10
1秒前
aero完成签到 ,获得积分10
1秒前
1秒前
1秒前
深情安青应助曾无忧采纳,获得10
2秒前
大橙子完成签到,获得积分10
2秒前
3秒前
3秒前
张冰驰完成签到,获得积分10
4秒前
INFJ完成签到,获得积分10
4秒前
5秒前
June发布了新的文献求助10
6秒前
李爱国应助TS采纳,获得10
7秒前
子车茗应助guozizi采纳,获得30
7秒前
8秒前
8秒前
乐观帅哥完成签到 ,获得积分10
8秒前
充电宝应助xiyeqaq采纳,获得10
8秒前
9秒前
wyx完成签到,获得积分20
9秒前
充电宝应助左边向北采纳,获得10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
ban完成签到,获得积分10
11秒前
12秒前
英姑应助123采纳,获得10
12秒前
12秒前
NexusExplorer应助trayheep采纳,获得10
12秒前
ws发布了新的文献求助10
13秒前
kyt完成签到,获得积分10
13秒前
龙九少完成签到,获得积分10
13秒前
赵丽红发布了新的文献求助10
14秒前
14秒前
领导范儿应助刘shuchang采纳,获得10
15秒前
15秒前
16秒前
hqh发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Weekly Somapacitan is Effective and Well-Tolerated in Children with Idiopathic Short Stature: Randomised Phase 3 Trial 600
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016248
求助须知:如何正确求助?哪些是违规求助? 4256302
关于积分的说明 13264360
捐赠科研通 4060256
什么是DOI,文献DOI怎么找? 2220809
邀请新用户注册赠送积分活动 1230053
关于科研通互助平台的介绍 1152671