水溶液
纳米线
锌
阴极
材料科学
电化学
纳米技术
储能
化学工程
原电池
电极
化学
冶金
物理化学
功率(物理)
工程类
物理
量子力学
作者
Yunzhuo Zhang,Xin Li,Yue Cheng,Wenhu Tan,Xintang Huang
标识
DOI:10.1016/j.jcis.2020.10.068
摘要
As one of the most mature battery systems, the silver-zinc battery holds huge promise in the field of aqueous rechargeable batteries due to superior performance, high safety and environmental friendliness. It is urgent to improve the areal capacity of silver-zinc batteries so far. This study reports a novel Cu-supported Ag Nanowires ([email protected]1-5: abbreviation of [email protected]1, [email protected]2, [email protected]3, [email protected]4 and [email protected]5) as binder-free cathodes for high performance rechargeable aqueous silver-zinc batteries. [email protected]1-5 are successfully prepared by two steps of electrochemical nanoengineering and mild galvanic replacement between Cu and [Ag(NH3)2]+ chelate ions under green solution. With ultrahigh Ag loading of above 81 mg cm−2, the [email protected]5 cathode achieves ultrahigh areal capacity of above 36 mAh cm−2 at current density of 10 mA cm−2. Benefiting from synergistic effect of Ag and Cu, multiply twinned structure accompanied by lattice defections (such as lattice distortion, mismatch and dislocation) and heterostructures, the [email protected]1-5 cathodes achieve excellent Ag utilization and cycling stability. Furthermore, the aqueous rechargeable [email protected]5-Zn battery demonstrates an excellent areal capacity of 36.80 mAh cm−2 at 10 mA cm−2. This work offers a promising pathway to greatly enhance areal capacity of bimetallic nanostructure-based electrodes and the [email protected]1-5-Zn batteries are attractive for large-scale energy-storage application.
科研通智能强力驱动
Strongly Powered by AbleSci AI