亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

All-dielectric multifunctional transmittance-tunable metasurfaces based on guided-mode resonance and ENZ effect

材料科学 光电子学 电介质 氧化铟锡 电容器 极化(电化学) 透射率 光学 电压 纳米技术 薄膜 电气工程 物理 工程类 物理化学 化学
作者
Xiaoming Qiu,Jian Shi,Yanping Li,Fan Zhang
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:32 (6): 065202-065202 被引量:13
标识
DOI:10.1088/1361-6528/abc3e5
摘要

Electrically tunable metasurfaces open new doors for manipulating the phase, amplitude and polarization of light in ultrathin layers. Compared with metal assisted metasurfaces, all-dielectric transmission metasurfaces-with outstanding feature of low loss, especially incorporating with new electro-optical materials-show great potential for the next generation flat optics. In this study, by combining the epsilon-near-zero effect in indium tin oxide (ITO) with guided-mode resonance, we propose novel electrically tunable all-dielectric metasurface architectures with versatile functions for widespread potential application. The inserted periodic ITO and hafnium oxide layers sandwiched in silicon act as two metal-oxide-semiconductor capacitors in a single period to disturb the resonance wavelength in the near-infrared spectral range under the voltage applied. For the one-dimensional structure, the transmittances of this metasurface at 1512 and 1510 nm change 20 and -14 dB under 0∼5 V bias voltage, respectively. In addition, the bilayer structure performs well in double-waveband applications, indicating that more layers can support more operation wavebands. Meanwhile, the two-dimensional structure works as a polarization insensitive device when setting the same structural parameters in both orthogonal directions. The proposed architecture, with various merits including ultra-compact size, high-speed and complementary metal-oxide-semiconductor compatibility, provides a multifunctional and multi-degree-of-freedom design, as well as enormous potential applications in more complicated flat optics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助吴茂林采纳,获得10
10秒前
辛勤山柳完成签到 ,获得积分20
15秒前
叙温雨发布了新的文献求助10
30秒前
garbage完成签到,获得积分10
36秒前
飘逸的飞丹完成签到 ,获得积分10
42秒前
43秒前
terry发布了新的文献求助10
49秒前
浮游应助科研通管家采纳,获得10
59秒前
GingerF应助科研通管家采纳,获得200
59秒前
天天快乐应助科研通管家采纳,获得10
59秒前
GingerF应助科研通管家采纳,获得200
1分钟前
怡然枫叶完成签到,获得积分10
1分钟前
ysc121完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助terry采纳,获得20
1分钟前
芝士发布了新的文献求助10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Chen完成签到 ,获得积分10
1分钟前
Criminology34应助olekravchenko采纳,获得10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
Criminology34应助olekravchenko采纳,获得10
2分钟前
打打应助叙温雨采纳,获得10
2分钟前
彩色的尔珍完成签到,获得积分10
2分钟前
万能图书馆应助庖丁解柚采纳,获得10
2分钟前
天天快乐应助123456采纳,获得10
2分钟前
2分钟前
2分钟前
123456发布了新的文献求助10
2分钟前
叙温雨发布了新的文献求助10
2分钟前
甜美帅哥发布了新的文献求助10
3分钟前
脑洞疼应助123456采纳,获得10
3分钟前
3分钟前
张宇完成签到,获得积分10
3分钟前
123456发布了新的文献求助10
3分钟前
3分钟前
小二郎应助叙温雨采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291497
求助须知:如何正确求助?哪些是违规求助? 4442516
关于积分的说明 13830013
捐赠科研通 4325551
什么是DOI,文献DOI怎么找? 2374353
邀请新用户注册赠送积分活动 1369670
关于科研通互助平台的介绍 1333839