Verifiable and privacy preserving federated learning without fully trusted centers

计算机科学 正确性 方案(数学) 人工神经网络 协议(科学) 遮罩(插图) 深度学习 过程(计算) 可验证秘密共享 计算机安全 人工智能 云计算 操作系统 算法 医学 数学分析 艺术 病理 视觉艺术 集合(抽象数据类型) 程序设计语言 替代医学 数学
作者
Gang Han,Tiantian Zhang,Yinghui Zhang,Guowen Xu,Jianfei Sun,Jun Cao
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Science+Business Media]
卷期号:13 (3): 1431-1441 被引量:18
标识
DOI:10.1007/s12652-020-02664-x
摘要

With the rise of neural network, deep learning technology is more and more widely used in various fields. Federated learning is one of the training types in deep learning. In federated learning, each user and cloud server (CS) cooperatively train a unified neural network model. However, in this process, the neural network system may face some more challenging problems exemplified by the threat of user privacy disclosure, the error of server’s returned results, and the difficulty of implementing the trusted center in practice. In order to solve the above problems simultaneously, we propose a verifiable federated training scheme that supports privacy protection over deep neural networks. In our scheme, the key exchange technology is used to remove the trusted center, the double masking protocol is used to ensure that the privacy of users is not disclosed, and the tag aggregation method is used to ensure the correctness of the results returned by the server. Formal security analysis and comprehensive performance evaluation indicate that the proposed scheme is secure and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
格纹完成签到,获得积分10
1秒前
2秒前
zzz发布了新的文献求助10
2秒前
英姑应助[刘小婷]采纳,获得10
2秒前
fukesi完成签到,获得积分10
2秒前
我是老大应助闹闹加油采纳,获得10
3秒前
星辰大海应助牛牛采纳,获得10
5秒前
7秒前
8秒前
图图发布了新的文献求助10
8秒前
8秒前
9秒前
zzz完成签到,获得积分10
10秒前
小二郎应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
小小富应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
Asahi完成签到 ,获得积分10
11秒前
研友_ngkyGn应助科研通管家采纳,获得10
11秒前
Loooong应助科研通管家采纳,获得20
11秒前
yar应助科研通管家采纳,获得10
11秒前
11秒前
MchemG应助科研通管家采纳,获得10
11秒前
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
研友_ngkyGn应助科研通管家采纳,获得10
12秒前
白色之牙完成签到,获得积分10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
yar应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
韩凡发布了新的文献求助10
12秒前
大个应助tmxx采纳,获得10
13秒前
mm发布了新的文献求助10
13秒前
淡淡816完成签到,获得积分10
14秒前
14秒前
无心的天薇完成签到,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961103
求助须知:如何正确求助?哪些是违规求助? 3507388
关于积分的说明 11135834
捐赠科研通 3239867
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803152