Development and Validation of a Contrast-Enhanced CT-Based Radiomics Nomogram for Prediction of Therapeutic Efficacy of Anti-PD-1 Antibodies in Advanced HCC Patients

列线图 医学 无线电技术 单变量 逻辑回归 放射科 肝细胞癌 肿瘤科 核医学 内科学 多元统计 机器学习 计算机科学
作者
Guosheng Yuan,Yangda Song,Qi Li,Xiao Hu,Mengya Zang,Wencong Dai,Xiao Cheng,Wei Huang,Wenxuan Yu,Mian Chen,Yabing Guo,Qifan Zhang,Jinzhang Chen
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:11 被引量:52
标识
DOI:10.3389/fimmu.2020.613946
摘要

Background There is no study accessible now assessing the prognostic aspect of radiomics for anti-PD-1 therapy for patients with HCC. Aim The aim of this study was to develop and validate a radiomics nomogram by incorporating the pretreatment contrast-enhanced Computed tomography (CT) images and clinical risk factors to estimate the anti-PD-1 treatment efficacy in Hepatocellular Carcinoma (HCC) patients. Methods A total of 58 patients with advanced HCC who were refractory to the standard first-line of therapy, and received PD-1 inhibitor treatment with Toripalimab, Camrelizumab, or Sintilimab from 1st January 2019 to 31 July 2020 were enrolled and divided into two sets randomly: training set (n = 40) and validation set (n = 18). Radiomics features were extracted from non-enhanced and contrast-enhanced CT scans and selected by using the least absolute shrinkage and selection operator (LASSO) method. Finally, a radiomics nomogram was developed based on by univariate and multivariate logistic regression analysis. The performance of the nomogram was evaluated by discrimination, calibration, and clinical utility. Results Eight radiomics features from the whole tumor and peritumoral regions were selected and comprised of the Fusion Radiomics score. Together with two clinical factors (tumor embolus and ALBI grade), a radiomics nomogram was developed with an area under the curve (AUC) of 0.894 (95% CI, 0.797–0.991) and 0.883 (95% CI, 0.716–0.998) in the training and validation cohort, respectively. The calibration curve and decision curve analysis (DCA) confirmed that nomogram had good consistency and clinical usefulness. Conclusions This study has developed and validated a radiomics nomogram by incorporating the pretreatment CECT images and clinical factors to predict the anti-PD-1 treatment efficacy in patients with advanced HCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆萝完成签到,获得积分10
刚刚
Jenny应助Eva采纳,获得10
刚刚
bkagyin应助17808352679采纳,获得10
刚刚
俭朴夜雪发布了新的文献求助10
1秒前
1秒前
林上草应助123采纳,获得10
1秒前
科目三应助AoiNG采纳,获得10
1秒前
2秒前
orixero应助雪白涵山采纳,获得20
2秒前
123发布了新的文献求助10
3秒前
ajing完成签到,获得积分10
3秒前
537完成签到,获得积分10
3秒前
3秒前
4秒前
清醒的ZY完成签到,获得积分10
4秒前
yxf发布了新的文献求助10
5秒前
大个应助叫滚滚采纳,获得10
5秒前
5秒前
Rui发布了新的文献求助10
6秒前
6秒前
China发布了新的文献求助10
6秒前
6秒前
ryze完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
莉莉发布了新的文献求助10
8秒前
9秒前
9秒前
辣辣完成签到,获得积分10
9秒前
桐桐应助白华苍松采纳,获得10
9秒前
华仔应助啊嚯采纳,获得10
9秒前
yasan完成签到,获得积分10
9秒前
10秒前
Fsy完成签到,获得积分10
10秒前
万能图书馆应助China采纳,获得10
10秒前
杨欢完成签到,获得积分10
10秒前
Stanley发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762