数学
分段
指数稳定性
点式的
李雅普诺夫函数
应用数学
矢量场
数学分析
理论(学习稳定性)
控制理论(社会学)
非线性系统
几何学
计算机科学
量子力学
机器学习
物理
人工智能
控制(管理)
作者
Raffaele Iervolino,Stephan Trenn,Francesco Vasca
出处
期刊:IEEE Transactions on Automatic Control
[Institute of Electrical and Electronics Engineers]
日期:2020-05-22
卷期号:66 (4): 1513-1528
被引量:11
标识
DOI:10.1109/tac.2020.2996597
摘要
Asymptotic stability of continuous-time piecewise affine systems defined over a polyhedral partition of the state space, with possible discontinuous vector field on the boundaries, is considered.In this article, the feasible Filippov solution concept is introduced by characterizing single-mode Caratheodory, sliding mode, and forward Zeno behaviors.Then, a global asymptotic stability result through a (possibly discontinuous) piecewise Lyapunov function is presented.The sufficient conditions are based on pointwise classifications of the trajectories which allow the identification of crossing, unreachable, and Caratheodory boundaries.It is shown that the sign and jump conditions of the stability theorem can be expressed in terms of linear matrix inequalities by particularizing to piecewise quadratic Lyapunov functions and using the cone-copositivity approach.Several examples illustrate the theoretical arguments and the effectiveness of the stability result.
科研通智能强力驱动
Strongly Powered by AbleSci AI