封装(网络)
现象
仿形(计算机编程)
计算生物学
拉曼光谱
基因组
材料科学
纳米技术
基因
生物
遗传学
计算机科学
物理
计算机网络
操作系统
光学
作者
Teng Xu,Yanhai Gong,Xiaolu Su,Pengfei Zhu,Jing Dai,Jian Xu,Bo Ma
出处
期刊:Small
[Wiley]
日期:2020-06-09
卷期号:16 (30)
被引量:49
标识
DOI:10.1002/smll.202001172
摘要
The small size and low DNA amount of bacterial cells have hindered establishing phenome-genome links in a precisely indexed, one-cell-per-reaction manner. Here, Raman-Activated Gravity-driven single-cell Encapsulation and Sequencing (RAGE-Seq) is presented, where individual cells are phenotypically screened via single-cell Raman spectra (SCRS) in an aquatic, vitality-preserving environment, then the cell with targeted SCRS is precisely packaged in a picoliter microdroplet and readily exported in a precisely indexed, "one-cell-one-tube" manner. Such integration of microdroplet encapsulation to Raman-activated sorting ensures high-coverage one-cell genome sequencing or cultivation that is directly linked to metabolic phenotype. For clinical Escherichia coli isolates, genome assemblies derived from precisely one cell via RAGE-Seq consistently reach >95% coverage. Moreover, directly from a urine sample of urogenital tract infection, metabolic-activity-based antimicrobial susceptibility phenotypes and genome sequence of 99.5% coverage are obtained simultaneously from precisely one cell. This single-cell global mutation map corroborates resistance phenotype and genotype, and unveils epidemiological features with high specificity and sensitivity. The ability to profile and correlate bacterial metabolic phenome and high-quality genome sequences at one-cell resolution suggests broad application of RAGE-Seq.
科研通智能强力驱动
Strongly Powered by AbleSci AI