已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive computation offloading and resource allocation strategy in a mobile edge computing environment

计算机科学 移动边缘计算 分布式计算 云计算 边缘计算 调度(生产过程) 计算卸载 任务(项目管理) 移动设备 移动云计算 实时计算 数学优化 操作系统 数学 管理 经济
作者
Zhao Tong,Xiaomei Deng,Feng Ye,Sunitha Basodi,Xueli Xiao,Yi Pan
出处
期刊:Information Sciences [Elsevier BV]
卷期号:537: 116-131 被引量:86
标识
DOI:10.1016/j.ins.2020.05.057
摘要

With the popularity of smart mobile equipment, the amount of data requested by users is growing rapidly. The traditional centralized processing method represented by the cloud computing model can no longer satisfy the effective processing of large amounts of data. Therefore, the mobile edge computing (MEC) is used as a new computing model to process the big growing data, which can better meet the service requirements. Similar to the task scheduling problem in cloud computing, an important issue in the MEC environment is task offloading and resource allocation. In this paper, we propose an adaptive task offloading and resource allocation algorithm in the MEC environment. The proposed algorithm uses the deep reinforcement learning (DRL) method to determine whether the task needs to be offloaded and allocates computing resources for the task. We simulate the generation of tasks in the form of Poisson distribution, and all tasks are submitted to be processed in the form of task flow. Besides, we consider the mobility of mobile user equipment (UE) between base stations (BSs), which is closer to the actual application environment. The DRL method is used to select the suitable computing node for each task according to the optimization objective, and the optimal strategy for solving the objective problem is learned in the algorithm training process. Compared with other comparison algorithms in different MEC environments, our proposed algorithm has the best performance in reducing the task average response time and the total system energy consumption, improving the system utility, which meets the profits of users and service providers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助科研通管家采纳,获得10
3秒前
11应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
李宁完成签到,获得积分10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
笗一一完成签到 ,获得积分10
4秒前
5秒前
无误发布了新的文献求助10
5秒前
kk发布了新的文献求助30
7秒前
chao发布了新的文献求助10
11秒前
乐乐应助灵梦柠檬酸采纳,获得10
12秒前
12秒前
可爱的函函应助hss采纳,获得10
15秒前
17秒前
18秒前
chao完成签到,获得积分10
20秒前
酷波er应助ymxlcfc采纳,获得10
21秒前
xiao发布了新的文献求助10
22秒前
26秒前
AJJACKY完成签到,获得积分10
26秒前
哈哈哈完成签到 ,获得积分10
26秒前
26秒前
清爽寒安完成签到,获得积分10
27秒前
英俊的铭应助李宁采纳,获得10
28秒前
29秒前
30秒前
州府十三发布了新的文献求助10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980484
求助须知:如何正确求助?哪些是违规求助? 3524440
关于积分的说明 11221506
捐赠科研通 3261890
什么是DOI,文献DOI怎么找? 1800932
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283