微粒
转录组
仿形(计算机编程)
生物
基因表达
基因
生态学
计算机科学
操作系统
遗传学
作者
Danni Lyu,Zhijian Chen,Siham Almansoob,Hui Chen,Ye Yang,Fan Song,Lifang Zhang,Zhenwei Qin,Qiaomei Tang,Houfa Yin,Wen Xu,Ke Yao,Qiuli Fu
出处
期刊:Ocular Surface
[Elsevier]
日期:2020-06-19
卷期号:18 (4): 554-564
被引量:28
标识
DOI:10.1016/j.jtos.2020.06.003
摘要
To explore the molecular mechanisms of PM2.5-induced dysfunction in human corneal epithelial cells (HCECs) and the potential role of the plasminogen activator inhibitor type-2 (PAI-2) in PM2.5-induced autophagy in vitro and in vivo. RNA-Seq was performed to identify the differentially expressed genes (DEGs) in PM2.5-exposed HCECs compared to unexposed condition, followed by validation via real-time PCR (qRT-PCR). Corneal fluorescein staining and tear secretion were assessed in the PM2.5-exposed rat model. The expression of PAI-2 and autophagy-related markers were examined via immunoblotting, immunofluorescence staining and/or qRT-PCR in PM2.5-exposed or unexposed HCECs and rat corneas. PAI-2-knockdown HCECs were generated to study PAI-2's role in the PM2.5-induced autophagy in HCECs. A total of 434 DEGs—240 up-regulated and 194 down-regulated—were identified in PM2.5-exposed HCECs rather than unexposed HCECs. The expression of a few genes related to proliferation, inflammation, and aryl hydrocarbon stimulation were significantly altered by PM2.5 exposure. PAI-2 expression was up-regulated in PM2.5-exposed HCECs, sharing a similar fluctuation trend with autophagy-related markers LC3B II and BECN1 according to various exposure periods. Moreover, PAI-2 knockdown significantly suppressed the expression of LC3B and BECN1 in PM2.5-exposed HCECs. The corneal fluorescein staining was enhanced and tear secretion was significantly reduced in PM2.5-exposed rat eyes. PAI-2 expression was also increased in PM2.5-exposed rat corneas, together with the up-regulation of several autophagy-related markers. The present study identified the altered expression of hundreds of genes in PM2.5-exposed HCECs, which suggests the importance of PM2.5 for cornea health. The involvement of PAI-2 was discovered in the PM2.5-induced autophagy in HCECs as well as likely in rat corneas, which implied that PAI-2 may become a potential target of clinical treatment of PM2.5-associated ocular surface diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI