机械
粘弹性
伽辽金法
刚度(电磁)
振动
材料科学
数学
物理
有限元法
热力学
声学
复合材料
作者
B.A. Khudayarov,Х.М. Комилова,Ф.Ж. Тураев
出处
期刊:International Journal of Applied Mechanics
[World Scientific]
日期:2019-11-01
卷期号:11 (09): 1950090-1950090
被引量:29
标识
DOI:10.1142/s175882511950090x
摘要
Vibration problems of pipelines made of composite materials conveying pulsating flow of gas and fluid are investigated in the paper. A dynamic model of motion of pipelines conveying pulsating fluid flow supported by a Hetenyi’s base is developed taking into account the viscosity properties of the structure material, axial forces, internal pressure and Winkler’s viscoelastic base. To describe the processes of viscoelastic material strain, the Boltzmann–Volterra integral model with weakly singular hereditary kernels is used. Using the Bubnov–Galerkin method, the problem is reduced to the study of a system of ordinary integro-differential equations (IDE). A computational algorithm is developed based on the elimination of the features of IDE with weakly singular kernels, followed by the use of quadrature formulas. The effect of rheological parameters of the pipeline material, flow rate and base parameters on the vibration of a viscoelastic pipeline conveying pulsating fluid is analyzed. The convergence analysis of the approximate solution of the Bubnov–Galerkin method is carried out. It was revealed that the viscosity parameters of the material and the pipeline base lead to a significant change in the critical flow rate. It was stated that an increase in excitation coefficient of pulsating flow and the parameter of internal pressure leads to a decrease in the critical flow rate. It is shown that an increase in the singularity parameter, the Winkler base parameter, the rigidity parameter of the continuous base layer and the Reynolds number increases the critical flow rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI