Application of deep learning in aquatic bioassessment: Towards automated identification of non-biting midges

摇蚊科 鉴定(生物学) 卷积神经网络 人工智能 生物监测 亚科 人工神经网络 计算机科学 过程(计算) 模式识别(心理学) 生态学 机器学习 生物 基因 操作系统 生物化学 幼虫
作者
Djuradj Milošević,Aleksandar Milosavljević,Bratislav Predić,Andrew S. Medeiros,Dimitrija Savić‐Zdravković,Milica Stojković Piperac,Tijana Kostić,Filip Spasić,Florian Leese
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:711: 135160-135160 被引量:40
标识
DOI:10.1016/j.scitotenv.2019.135160
摘要

Morphological species identification is often a difficult, expensive, and time-consuming process which hinders the ability for reliable biomonitoring of aquatic ecosystems. An alternative approach is to automate the whole process, accelerating the identification process. Here, we demonstrate an automatic machine-based identification approach for non-biting midges (Diptera: Chironomidae) using Convolutional Neural Networks (CNNs) as a means of increasing taxonomic resolution of biomonitoring data at a minimal cost. Chironomidae were used to build the automatic identifier, as a family of insects that are abundant and ecologically important, yet difficult and time-consuming to accurately identify. The approach was tested with 10 morphologically very similar species from the same genus or subfamilies, comprising 1846 specimens from the South Morava river basin, Serbia. Three CNN models were built utilizing either species, genus, or subfamily data. After training the artificial neural network, images that the network had not seen during the training phase achieved an accuracy of 99.5% for species-level identification, while at the genus and subfamily level all images were correctly assigned (100% accuracy). Gradient-weighted Class Activation Mapping (Grad-CAM) visualized the mentum, ventromental plates, mandibles, submentum, and postoccipital margin to be morphologically important features for CNN classification. Thus, the CNN approach was a highly accurate solution for chironomid identification of aquatic macroinvertebrates opening a new avenue for implementation of artificial intelligence and deep learning methodology in the biomonitoring world. This approach also provides a means to overcome the gap in bioassessment for developing countries where widespread use techniques for routine monitoring are currently limited.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lll发布了新的文献求助10
3秒前
wu发布了新的文献求助10
4秒前
顾矜应助ohh采纳,获得10
4秒前
上官若男应助无尘采纳,获得10
6秒前
852应助无尘采纳,获得10
6秒前
科研通AI2S应助无尘采纳,获得10
6秒前
6秒前
nickel发布了新的文献求助10
8秒前
8秒前
Jodie完成签到,获得积分10
9秒前
精明青旋发布了新的文献求助10
9秒前
11秒前
从容的迎蓉完成签到,获得积分10
11秒前
大气成仁完成签到,获得积分10
11秒前
追寻紫安发布了新的文献求助10
12秒前
香蕉觅云应助lll采纳,获得10
12秒前
liulangnmg完成签到,获得积分10
13秒前
机智张发布了新的文献求助10
14秒前
15秒前
zhu完成签到,获得积分10
16秒前
marsha完成签到,获得积分10
16秒前
18秒前
华仔应助course采纳,获得10
18秒前
陆浩天完成签到,获得积分10
19秒前
ohh发布了新的文献求助10
19秒前
李健应助精明青旋采纳,获得10
20秒前
YNN发布了新的文献求助10
20秒前
花开城北完成签到,获得积分10
21秒前
追梦人完成签到 ,获得积分10
21秒前
YY完成签到,获得积分10
22秒前
服部平次发布了新的文献求助10
23秒前
Ar关注了科研通微信公众号
23秒前
隐形曼青应助阿晴采纳,获得10
23秒前
Ava应助陆浩天采纳,获得10
23秒前
23秒前
爆米花应助100采纳,获得10
24秒前
25秒前
26秒前
滋滋发布了新的文献求助10
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170388
求助须知:如何正确求助?哪些是违规求助? 2821553
关于积分的说明 7934967
捐赠科研通 2481839
什么是DOI,文献DOI怎么找? 1322122
科研通“疑难数据库(出版商)”最低求助积分说明 633512
版权声明 602608