已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of deep learning in aquatic bioassessment: Towards automated identification of non-biting midges

摇蚊科 鉴定(生物学) 卷积神经网络 人工智能 生物监测 亚科 人工神经网络 计算机科学 过程(计算) 模式识别(心理学) 生态学 机器学习 生物 基因 操作系统 生物化学 幼虫
作者
Djuradj Milošević,Aleksandar Milosavljević,Bratislav Predić,Andrew S. Medeiros,Dimitrija Savić‐Zdravković,Milica Stojković Piperac,Tijana Kostić,Filip Spasić,Florian Leese
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:711: 135160-135160 被引量:40
标识
DOI:10.1016/j.scitotenv.2019.135160
摘要

Morphological species identification is often a difficult, expensive, and time-consuming process which hinders the ability for reliable biomonitoring of aquatic ecosystems. An alternative approach is to automate the whole process, accelerating the identification process. Here, we demonstrate an automatic machine-based identification approach for non-biting midges (Diptera: Chironomidae) using Convolutional Neural Networks (CNNs) as a means of increasing taxonomic resolution of biomonitoring data at a minimal cost. Chironomidae were used to build the automatic identifier, as a family of insects that are abundant and ecologically important, yet difficult and time-consuming to accurately identify. The approach was tested with 10 morphologically very similar species from the same genus or subfamilies, comprising 1846 specimens from the South Morava river basin, Serbia. Three CNN models were built utilizing either species, genus, or subfamily data. After training the artificial neural network, images that the network had not seen during the training phase achieved an accuracy of 99.5% for species-level identification, while at the genus and subfamily level all images were correctly assigned (100% accuracy). Gradient-weighted Class Activation Mapping (Grad-CAM) visualized the mentum, ventromental plates, mandibles, submentum, and postoccipital margin to be morphologically important features for CNN classification. Thus, the CNN approach was a highly accurate solution for chironomid identification of aquatic macroinvertebrates opening a new avenue for implementation of artificial intelligence and deep learning methodology in the biomonitoring world. This approach also provides a means to overcome the gap in bioassessment for developing countries where widespread use techniques for routine monitoring are currently limited.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧千儿发布了新的文献求助10
1秒前
Owen应助大侦探皮卡丘采纳,获得10
1秒前
影1发布了新的文献求助10
2秒前
完美世界应助夜阑卧听采纳,获得10
2秒前
fzzf完成签到,获得积分10
3秒前
geold发布了新的文献求助10
4秒前
超级微笑完成签到 ,获得积分10
5秒前
SPLjoker完成签到 ,获得积分10
6秒前
8秒前
10秒前
leo10743发布了新的文献求助20
13秒前
悟川完成签到 ,获得积分10
16秒前
geold完成签到,获得积分10
18秒前
搞怪冬天发布了新的文献求助10
19秒前
酷波er应助奥德修斯凡采纳,获得10
20秒前
21秒前
sqlin完成签到 ,获得积分10
21秒前
jiangjiang完成签到 ,获得积分10
21秒前
嘿嘿完成签到 ,获得积分10
21秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得30
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
阔达的非笑完成签到 ,获得积分10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
25秒前
李鱼丸完成签到,获得积分10
26秒前
27秒前
28秒前
半只熊完成签到 ,获得积分10
28秒前
29秒前
bkagyin应助夜阑卧听采纳,获得10
30秒前
Rn完成签到 ,获得积分10
31秒前
32秒前
乐枳完成签到 ,获得积分10
32秒前
魔芋发布了新的文献求助10
32秒前
一只熊完成签到 ,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953339
求助须知:如何正确求助?哪些是违规求助? 3498826
关于积分的说明 11093114
捐赠科研通 3229324
什么是DOI,文献DOI怎么找? 1785293
邀请新用户注册赠送积分活动 869379
科研通“疑难数据库(出版商)”最低求助积分说明 801439