Application of deep learning in aquatic bioassessment: Towards automated identification of non-biting midges

摇蚊科 鉴定(生物学) 卷积神经网络 人工智能 生物监测 亚科 人工神经网络 计算机科学 过程(计算) 模式识别(心理学) 生态学 机器学习 生物 基因 操作系统 生物化学 幼虫
作者
Djuradj Milošević,Aleksandar Milosavljević,Bratislav Predić,Andrew S. Medeiros,Dimitrija Savić‐Zdravković,Milica Stojković Piperac,Tijana Kostić,Filip Spasić,Florian Leese
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:711: 135160-135160 被引量:40
标识
DOI:10.1016/j.scitotenv.2019.135160
摘要

Morphological species identification is often a difficult, expensive, and time-consuming process which hinders the ability for reliable biomonitoring of aquatic ecosystems. An alternative approach is to automate the whole process, accelerating the identification process. Here, we demonstrate an automatic machine-based identification approach for non-biting midges (Diptera: Chironomidae) using Convolutional Neural Networks (CNNs) as a means of increasing taxonomic resolution of biomonitoring data at a minimal cost. Chironomidae were used to build the automatic identifier, as a family of insects that are abundant and ecologically important, yet difficult and time-consuming to accurately identify. The approach was tested with 10 morphologically very similar species from the same genus or subfamilies, comprising 1846 specimens from the South Morava river basin, Serbia. Three CNN models were built utilizing either species, genus, or subfamily data. After training the artificial neural network, images that the network had not seen during the training phase achieved an accuracy of 99.5% for species-level identification, while at the genus and subfamily level all images were correctly assigned (100% accuracy). Gradient-weighted Class Activation Mapping (Grad-CAM) visualized the mentum, ventromental plates, mandibles, submentum, and postoccipital margin to be morphologically important features for CNN classification. Thus, the CNN approach was a highly accurate solution for chironomid identification of aquatic macroinvertebrates opening a new avenue for implementation of artificial intelligence and deep learning methodology in the biomonitoring world. This approach also provides a means to overcome the gap in bioassessment for developing countries where widespread use techniques for routine monitoring are currently limited.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形的易巧完成签到 ,获得积分10
刚刚
1秒前
Ava应助Autoimmune采纳,获得10
1秒前
科研通AI5应助多变的卡宾采纳,获得10
1秒前
Citrus发布了新的文献求助10
2秒前
科目三应助莉莉采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
惠惠发布了新的文献求助10
3秒前
深夜看文献的小刘完成签到,获得积分10
3秒前
菊菊发布了新的文献求助10
3秒前
3秒前
猪猪发布了新的文献求助10
4秒前
胖豆发布了新的文献求助10
4秒前
巴啦啦能量完成签到 ,获得积分10
4秒前
5秒前
完美凝海发布了新的文献求助30
5秒前
科研菜鸟发布了新的文献求助10
5秒前
升学顺利身体健康完成签到,获得积分10
6秒前
6秒前
爱学习发布了新的文献求助10
6秒前
cc发布了新的文献求助10
7秒前
533完成签到,获得积分20
7秒前
科研通AI5应助yx采纳,获得10
7秒前
8秒前
koi发布了新的文献求助10
8秒前
浦肯野应助湖月照我影采纳,获得30
8秒前
8秒前
陈博士完成签到,获得积分10
9秒前
Citrus完成签到,获得积分10
10秒前
费老三发布了新的文献求助30
10秒前
华仔应助chenjyuu采纳,获得10
10秒前
10秒前
最最最发布了新的文献求助10
10秒前
10秒前
Tuesday完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762