Determining the Presence of Metabolic Pathways using Machine Learning Approach

计算机科学 人工智能 机器学习 朴素贝叶斯分类器 支持向量机 决策树 分类器(UML) 特征选择 人工神经网络 数据挖掘
作者
Yara Saud Aljarbou,Fazilah Haron
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:11 (8) 被引量:1
标识
DOI:10.14569/ijacsa.2020.0110845
摘要

The reconstruction of the metabolic network of an organism based on its genome sequence is a key challenge in systems biology. One of the strategies that can be used to address this problem is the prediction of the presence or the absence of a metabolic pathway from a reference database of known pathways. Although, such models have been constructed manually, obviously such a method cannot be used to cover thousands of genomes that has been sequenced. Therefore, more advanced techniques are needed for computational representation of metabolic networks. In this research, we have explored machine learning approach to determine the presence or the absent of metabolic pathway based on its annotated genome. We have built our own dataset of 4978 instances of pathways. The dataset consists of 1585 pathways with each having 20 different representations from 20 organisms. The pathways were obtained from the BioCyc Database Collection. The pathway dataset also consists of 20 features used to describe each pathway. In order to identify the suitable classifier, we have experimented five machine learning algorithms with and without applying feature selection methods, namely Decision Tree, Naive Bayes, Support Vector Machine, K-Nearest Neighbor and Logistic Regression. Our experiments have shown that Support Vector Machine is the best classifier with an accuracy of 96.9%, while the maximum accuracy reached by the previous work is 91.2%. Hence, adding more data to the pathway dataset can improve the performance of the machine learning classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光撒盐完成签到,获得积分10
1秒前
minjeong完成签到,获得积分10
1秒前
1秒前
1秒前
momo完成签到 ,获得积分10
2秒前
阿言完成签到,获得积分10
2秒前
2秒前
2758543477完成签到,获得积分10
2秒前
lit完成签到,获得积分10
3秒前
3秒前
十六发布了新的文献求助20
4秒前
Star1983完成签到,获得积分10
4秒前
风中凌乱完成签到 ,获得积分10
4秒前
宇宙昊发布了新的文献求助10
4秒前
4秒前
zsg发布了新的文献求助10
4秒前
lplplp完成签到,获得积分10
4秒前
FashionBoy应助xingxing采纳,获得10
5秒前
1234完成签到,获得积分10
5秒前
ccty完成签到,获得积分10
5秒前
adore完成签到,获得积分20
6秒前
翠甜翠甜大西瓜完成签到,获得积分10
6秒前
6秒前
hzwyyds完成签到,获得积分10
6秒前
阿言发布了新的文献求助10
6秒前
7秒前
zzt完成签到,获得积分10
7秒前
Hello_Suning完成签到 ,获得积分10
8秒前
King强完成签到,获得积分10
8秒前
Ni发布了新的文献求助10
8秒前
谦让谷菱发布了新的文献求助10
9秒前
阔达的哲瀚完成签到,获得积分10
9秒前
9秒前
shmily完成签到,获得积分20
10秒前
zzn完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
Autumn完成签到,获得积分10
12秒前
彭于晏应助wangyuchen采纳,获得30
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942