亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Determining the Presence of Metabolic Pathways using Machine Learning Approach

计算机科学 人工智能 机器学习 朴素贝叶斯分类器 支持向量机 决策树 分类器(UML) 特征选择 人工神经网络 数据挖掘
作者
Yara Saud Aljarbou,Fazilah Haron
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:11 (8) 被引量:1
标识
DOI:10.14569/ijacsa.2020.0110845
摘要

The reconstruction of the metabolic network of an organism based on its genome sequence is a key challenge in systems biology. One of the strategies that can be used to address this problem is the prediction of the presence or the absence of a metabolic pathway from a reference database of known pathways. Although, such models have been constructed manually, obviously such a method cannot be used to cover thousands of genomes that has been sequenced. Therefore, more advanced techniques are needed for computational representation of metabolic networks. In this research, we have explored machine learning approach to determine the presence or the absent of metabolic pathway based on its annotated genome. We have built our own dataset of 4978 instances of pathways. The dataset consists of 1585 pathways with each having 20 different representations from 20 organisms. The pathways were obtained from the BioCyc Database Collection. The pathway dataset also consists of 20 features used to describe each pathway. In order to identify the suitable classifier, we have experimented five machine learning algorithms with and without applying feature selection methods, namely Decision Tree, Naive Bayes, Support Vector Machine, K-Nearest Neighbor and Logistic Regression. Our experiments have shown that Support Vector Machine is the best classifier with an accuracy of 96.9%, while the maximum accuracy reached by the previous work is 91.2%. Hence, adding more data to the pathway dataset can improve the performance of the machine learning classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
隐形曼青应助香菜菜菜子采纳,获得10
4秒前
26秒前
26秒前
26秒前
sci女工发布了新的文献求助10
30秒前
DRFANG发布了新的文献求助30
30秒前
JJ完成签到,获得积分20
31秒前
31秒前
研友_VZG7GZ应助腼腆的又晴采纳,获得10
31秒前
JamesPei应助科研通管家采纳,获得10
33秒前
JJ发布了新的文献求助10
34秒前
123完成签到,获得积分10
37秒前
杳鸢应助AJoe采纳,获得50
40秒前
猪幺妖完成签到 ,获得积分10
41秒前
42秒前
Gigi完成签到,获得积分10
47秒前
猴子大王666完成签到,获得积分10
52秒前
55秒前
1分钟前
1分钟前
lchenbio发布了新的文献求助10
1分钟前
科研通AI2S应助单纯的雅香采纳,获得10
1分钟前
lchenbio完成签到,获得积分10
1分钟前
在水一方应助小吴采纳,获得10
1分钟前
1分钟前
搜集达人应助lchenbio采纳,获得10
1分钟前
1分钟前
复杂的小懒虫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
英姑应助复杂的小懒虫采纳,获得10
1分钟前
小吴发布了新的文献求助10
1分钟前
1分钟前
Swear完成签到 ,获得积分10
1分钟前
传奇3应助你的背包采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
LYQ发布了新的文献求助10
2分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477406
求助须知:如何正确求助?哪些是违规求助? 3068919
关于积分的说明 9109999
捐赠科研通 2760353
什么是DOI,文献DOI怎么找? 1514834
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699585