医学
射线照相术
骨科手术
手腕
舟状骨骨折
运动医学
尤登J统计
急诊科
放射科
卷积神经网络
人工智能
口腔正畸科
接收机工作特性
物理疗法
外科
内科学
计算机科学
精神科
作者
Emre Ozkaya,Fatih Esad Topal,Tuğrul Bulut,Merve Gürsoy,Mustafa Özuysal,Zeynep Karakaya
标识
DOI:10.1007/s00068-020-01468-0
摘要
The aim of this study is to determine the diagnostic performance of artificial intelligence with the use of convolutional neural networks (CNN) for detecting scaphoid fractures on anteroposterior wrist radiographs. The performance of the deep learning algorithm was also compared with that of the emergency department (ED) physician and two orthopaedic specialists (less experienced and experienced in the hand surgery).A total 390 patients with AP wrist radiographs were included in the study. The presence/absence of the fracture on radiographs was confirmed via CT. The diagnostic performance of the CNN, ED physician and two orthopaedic specialists (less experienced and experienced) as measured by AUC, sensitivity, specificity, F-Score and Youden index, to detect scaphoid fractures was evaluated and compared between the groups.The CNN had 76% sensitivity and 92% specificity, 0.840 AUC, 0.680 Youden index and 0.826 F score values in identifying scaphoid fractures. The experienced orthopaedic specialist had the best diagnostic performance according to AUC. While CNN's performance was similar to a less experienced orthopaedic specialist, it was better than the ED physician.The deep learning algorithm has the potential to be used for diagnosing scaphoid fractures on radiographs. Artificial intelligence can be useful for scaphoid fracture diagnosis particularly in the absence of an experienced orthopedist or hand surgeon.
科研通智能强力驱动
Strongly Powered by AbleSci AI