Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography

医学 射线照相术 骨科手术 手腕 舟状骨骨折 运动医学 尤登J统计 急诊科 放射科 卷积神经网络 人工智能 口腔正畸科 接收机工作特性 物理疗法 外科 内科学 计算机科学 精神科
作者
Emre Ozkaya,Fatih Esad Topal,Tuğrul Bulut,Merve Gürsoy,Mustafa Özuysal,Zeynep Karakaya
出处
期刊:European Journal of Trauma and Emergency Surgery [Springer Nature]
卷期号:48 (1): 585-592 被引量:39
标识
DOI:10.1007/s00068-020-01468-0
摘要

The aim of this study is to determine the diagnostic performance of artificial intelligence with the use of convolutional neural networks (CNN) for detecting scaphoid fractures on anteroposterior wrist radiographs. The performance of the deep learning algorithm was also compared with that of the emergency department (ED) physician and two orthopaedic specialists (less experienced and experienced in the hand surgery).A total 390 patients with AP wrist radiographs were included in the study. The presence/absence of the fracture on radiographs was confirmed via CT. The diagnostic performance of the CNN, ED physician and two orthopaedic specialists (less experienced and experienced) as measured by AUC, sensitivity, specificity, F-Score and Youden index, to detect scaphoid fractures was evaluated and compared between the groups.The CNN had 76% sensitivity and 92% specificity, 0.840 AUC, 0.680 Youden index and 0.826 F score values in identifying scaphoid fractures. The experienced orthopaedic specialist had the best diagnostic performance according to AUC. While CNN's performance was similar to a less experienced orthopaedic specialist, it was better than the ED physician.The deep learning algorithm has the potential to be used for diagnosing scaphoid fractures on radiographs. Artificial intelligence can be useful for scaphoid fracture diagnosis particularly in the absence of an experienced orthopedist or hand surgeon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小闵发布了新的文献求助10
1秒前
wang完成签到,获得积分0
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
丶huasheng完成签到 ,获得积分10
2秒前
pppyrus发布了新的文献求助10
2秒前
2秒前
2秒前
怡然的友容完成签到,获得积分10
2秒前
lxwwwxl完成签到,获得积分10
2秒前
nannan完成签到,获得积分20
3秒前
完美世界应助然然采纳,获得10
3秒前
3秒前
复杂黑夜发布了新的文献求助10
4秒前
4秒前
十三应助朝朝采纳,获得10
5秒前
闭眼玩手机完成签到,获得积分10
5秒前
Momo完成签到 ,获得积分10
5秒前
从容的蓉发布了新的文献求助10
5秒前
7秒前
搞怪的如南完成签到,获得积分10
7秒前
科研通AI6应助zzzyc采纳,获得10
8秒前
fuguier发布了新的文献求助10
9秒前
10秒前
Murphy完成签到,获得积分10
10秒前
小燕完成签到 ,获得积分10
11秒前
wql完成签到,获得积分10
11秒前
Hioa完成签到,获得积分10
12秒前
ANG完成签到 ,获得积分10
13秒前
13秒前
13秒前
魔力巴啦啦完成签到 ,获得积分10
14秒前
常裤子发布了新的文献求助10
15秒前
16秒前
123455完成签到,获得积分10
16秒前
淼淼完成签到,获得积分10
16秒前
17秒前
桐桐应助迷路的静曼采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483859
求助须知:如何正确求助?哪些是违规求助? 4584378
关于积分的说明 14397171
捐赠科研通 4514246
什么是DOI,文献DOI怎么找? 2473912
邀请新用户注册赠送积分活动 1459913
关于科研通互助平台的介绍 1433260