Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks

人工神经网络 升程阶跃函数 计算机科学 人工智能 过程(计算) 水准点(测量) 机器学习 工业工程 工程类 数学 大地测量学 统计 操作系统 地理
作者
Qiming Zhu,Zeliang Liu,Jinhui Yan
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2008.13547
摘要

The recent explosion of machine learning (ML) and artificial intelligence (AI) shows great potential in the breakthrough of metal additive manufacturing (AM) process modeling. However, the success of conventional machine learning tools in data science is primarily attributed to the unprecedented large amount of labeled data-sets (big data), which can be either obtained by experiments or first-principle simulations. Unfortunately, these labeled data-sets are expensive to obtain in AM due to the high expense of the AM experiments and prohibitive computational cost of high-fidelity simulations. We propose a physics-informed neural network (PINN) framework that fuses both data and first physical principles, including conservation laws of momentum, mass, and energy, into the neural network to inform the learning processes. To the best knowledge of the authors, this is the first application of PINN to three dimensional AM processes modeling. Besides, we propose a hard-type approach for Dirichlet boundary conditions (BCs) based on a Heaviside function, which can not only enforce the BCs but also accelerate the learning process. The PINN framework is applied to two representative metal manufacturing problems, including the 2018 NIST AM-Benchmark test series. We carefully assess the performance of the PINN model by comparing the predictions with available experimental data and high-fidelity simulation results. The investigations show that the PINN, owed to the additional physical knowledge, can accurately predict the temperature and melt pool dynamics during metal AM processes with only a moderate amount of labeled data-sets. The foray of PINN to metal AM shows the great potential of physics-informed deep learning for broader applications to advanced manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DreamLover完成签到,获得积分10
2秒前
阳佟听荷完成签到,获得积分10
3秒前
碧蓝一兰发布了新的文献求助10
4秒前
CXSCXD发布了新的文献求助10
4秒前
无语完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
小白科研完成签到,获得积分10
6秒前
pcr163应助科研混子采纳,获得30
9秒前
11秒前
shore发布了新的文献求助10
11秒前
无语发布了新的文献求助10
11秒前
知性的剑身完成签到,获得积分10
12秒前
14秒前
LZxyH发布了新的文献求助10
15秒前
16秒前
尤咏慈完成签到,获得积分10
16秒前
菜鸟发布了新的文献求助30
17秒前
17秒前
呆瓜完成签到,获得积分10
18秒前
YpH发布了新的文献求助10
18秒前
董董发布了新的文献求助10
19秒前
20秒前
9527z完成签到,获得积分10
20秒前
壹贰叁完成签到,获得积分10
20秒前
ych应助XLXY采纳,获得10
20秒前
星河发布了新的文献求助10
20秒前
碧蓝一兰完成签到,获得积分10
21秒前
21秒前
23秒前
24秒前
lc关闭了lc文献求助
24秒前
共享精神应助星河采纳,获得10
26秒前
Li发布了新的文献求助10
26秒前
朴素的天薇完成签到,获得积分10
27秒前
yy应助LZxyH采纳,获得10
28秒前
YuanbinMao应助neufy采纳,获得10
28秒前
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228284
求助须知:如何正确求助?哪些是违规求助? 2876084
关于积分的说明 8193771
捐赠科研通 2543258
什么是DOI,文献DOI怎么找? 1373602
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621333